-
赤泥是以铝土矿为原料,在氧化铝冶炼工业生产过程中排出的固体粉状废弃物, 具有强碱性,富含钙、铝和铁等氧化物,颗粒极细,按氧化铝的生产工艺可将赤泥分为烧结法赤泥、拜耳法赤泥及联合法赤泥3种[1-2]。中国是氧化铝生产大国,截至2016年,我国的赤泥累积堆存量超5.0×108 t,赤泥大量堆存,既占用土地,浪费资源,又会对自然环境和人身健康都产生重要影响[3-4]。因此,如何妥善处理和合理利用这些固体废弃物,已成为社会关注的热点。赤泥中富含铝、铁等氧化物且具有孔状的骨架结构,比表面积大,这些特点使赤泥具有较好的吸附性能,能有效吸附水溶液中的有机物和重金属物质[5-6]。
含铅废水主要来自电池、涂料、五金和印刷等行业[7],大量排放含铅废水会造成湖泊、河流、海洋、土壤等的污染[8]。化学沉淀法和吸附法是处理含铅废水最常见的技术方法。国内外已有学者对赤泥进行改性后,用于处理Pb(Ⅱ)废水,SAHU等[9] 使用盐酸酸化赤泥,经过中和、沉淀和煅烧后得到改性赤泥,对Pb(Ⅱ)的最大吸附容量为6.027 3 mg·g−1。
赤泥中的Na+、Ca2+和Mg2+等阳离子可与Pb(Ⅱ)发生交换,促进Pb(Ⅱ)的稳定化。此外,赤泥中含有的碱性物质(如OH−、
$\text{CO}_{3}^{2-}$ 等)也可与Pb(Ⅱ)发生沉淀反应,生成Pb(OH)2和PbCO3沉淀物,促进Pb(Ⅱ)的去除。本研究利用XRF、XRD、粒度分析和SEM-EDS等手段对赤泥样品进行特性分析,保留和利用了赤泥的碱性,碱性和吸附性能共同作用,应用于水溶液中Pb(Ⅱ)的去除实验研究中,探究其去除效果,考察了Pb(Ⅱ)初始浓度和pH对去除效果的影响,分析其动力学过程与去除机理。
联合法赤泥的特性及其对水溶液中Pb(Ⅱ)的去除
Characteristics of red mud in combined process and its performance on Pb(Ⅱ) removal in aqueous solution
-
摘要: 赤泥作为氧化铝冶炼过程中排出的一般工业固废,具有数量大、碱性强、粒径小、孔隙结构丰富等特征。采用XRF、XRD、SEM/EDX等分析手段,研究了赤泥的化学组成、矿物结构、粒度、比表面积、表面形貌、酸中和能力等特性。通过批实验观测了赤泥对水溶液中Pb(Ⅱ)的去除效果,并对Pb(Ⅱ)初始浓度、pH等影响因子对去除效果的影响展开了分析。结果表明,赤泥的主要化学成分为CaO、SiO2、Al2O3和Fe2O3,平均比表面积为43.8 m2·g−1;赤泥有很强的酸中和能力,对硝酸的中和能力约为1.875 mol·kg−1。初始pH=4,且过程中不控制pH时,反应在10 min之内达到平衡,去除率为98%~100%,赤泥对Pb(Ⅱ)的去除能力可达到25.9 mg·g−1。当pH=4时,赤泥对水溶液中Pb(Ⅱ)的去除反应在90~120 min时达到平衡,去除率为10%~45%,当初始浓度为1~100 mg·L−1时,Pb(Ⅱ)初始浓度越高,Pb(Ⅱ)去除能力越强,去除率越低。当pH为7和10时,Pb(Ⅱ)去除率分别为92%和98%,残留Pb(Ⅱ)浓度小于污水综合排放标准中第一类污染物最高允许排放浓度1.0 mg·L−1。通过分析可知,赤泥对Pb(Ⅱ)的去除符合拟二级动力学模型,吸附机理主要为化学吸附。Abstract: As a general industrial solid waste discharged from the smelting process of alumina, bauxite residue (red mud) is characterized as large quantity, strong alkalinity, small particle size and rich pore structure.XRF, XRD, SEM/EDX and other analytical methods were used to study its chemical composition, mineral structure, particle size, specific surface area, surface morphology and acid neutralization ability. The batch experiments were conducted to study the Pb(Ⅱ) removal effect in aqueous solution by red mud, and the influences of Pb(Ⅱ) initial concentration and pH on the removal effect were analyzed. The results showed that the main chemical components of red mud were CaO, SiO2, Al2O3 and Fe2O3, and its average specific surface area was 43.8 m2·g−1. Red mud had strong acid neutralization ability which was 1.875 mol·kg−1 towards nitric acid. At the initial pH=4, the Pb(Ⅱ) absorption reaction reached equilibrium within 10 min when the pH was not controlled during the process, the corresponding Pb(Ⅱ) removal rate was 98%~100% with Pb(Ⅱ) removal ability of 25.9 mg·g−1. At pH=4, the Pb(Ⅱ) removal reaction in aqueous solution reached equilibrium after 90~120 min, and the removal rate was 10%~45%. Among the Pb(Ⅱ) initial concentrations of 1~100 mg·L−1, the higher the initial Pb(Ⅱ) concentration, the larger removal amount and the lower removal rate of Pb(Ⅱ). When pH values were 7 and 10, the Pb(Ⅱ) removal rates were 92% and 98%, respectively, and the residual Pb(Ⅱ) concentration was less than the maximum permissible discharge concentration of 1.0 mg·L−1 for pollutant type I in comprehensive discharge standard. The Pb(Ⅱ) removal by red mud accorded with the quasi-secondary kinetic model, and the removal process was dominated by the chemisorption mechanism.
-
Key words:
- red mud /
- alkalinity /
- heavy metal /
- lead ion /
- comprehensive utilization
-
表 1 供试赤泥的化学组成
Table 1. Main chemical constituents of red mud
氧化物形态 含量/% 氧化物形态 含量/% CaO 25.50 TiO2 3.74 SiO2 24.44 K2O 2.75 Al2O3 21.68 MgO 1.19 Fe2O3 8.53 SO2 1.18 Na2O 6.93 PbO <0.01 表 2 赤泥对 Pb(Ⅱ)吸附的动力学方程参数
Table 2. Kinetic equation parameters of Pb(Ⅱ) absorption onto red mud
动力学模型 初始浓度 参数1 参数2 R2 伪一级动力学模型 5.37 k1=0.039 6 Qe=0.665 8 0.885 4 10.69 k1=0.033 6 Qe=0.619 6 0.827 2 52.08 k1=0.032 9 Qe=3.270 4 0.923 0 伪二级动力学模型 5.37 k2=8.790 1 Qe=1.202 5 0.995 1 10.69 k2=5.754 6 Qe=1.334 0 0.994 7 52.08 k2=73.880 0 Qe=3.694 0 0.959 9 Elovich动力学模型 5.37 a =0.169 3 b=0.346 3 0.931 5 10.69 a =0.143 5 b=0.638 5 0.943 5 52.08 a =0.719 0 b=−0.228 4 0.856 6 -
[1] 李冬, 潘利祥, 赵良庆, 等. 赤泥综合利用的研究进展[J]. 环境工程, 2014, 32(S1): 616-618. [2] 工信部和科技部联合印发. 赤泥综合利用指导意见: [2010]401号[EB/OL]. [2019-07-20]. 中华人民共和国工业和信息化部网, 2010. [3] 朱强, 齐波. 国内赤泥综合利用技术发展及现状[J]. 轻金属, 2009(8): 7-10. [4] XUE S G, KONG X F, ZHU F, et al. Proposal for management and alkalinity transformation of bauxite residue in China[J]. Environmental Science & Pollution Research International, 2016, 23(13): 12822-12834. [5] 张婧, 吴俊奇, 向连城, 等. 优化改性赤泥颗粒吸附含磷废水[J]. 水处理技术, 2017, 43(1): 77-81. [6] 王小娟, 岳钦艳, 赵频, 等. 赤泥颗粒吸附剂对重金属Cd(Ⅱ)和Pb(Ⅱ)吸附性能研究[J]. 工业水处理, 2013, 33(5): 61-64. doi: 10.3969/j.issn.1005-829X.2013.05.017 [7] 张帆, 贺盛福, 彭志远, 等. 处理含铅废水的现状及研究进展[J]. 化学通报, 2015, 78(5): 421-426. [8] 栗帅, 查会平, 范忠雷. 含铅废水处理技术研究现状及展望[J]. 化工进展, 2011, 30(S1): 336-339. [9] SAHU M K, MANDAL S, DASH S S, et al. Removal of Pb(II) from aqueous solution by acid activated red mud[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 1315-1324. doi: 10.1016/j.jece.2013.09.027 [10] 顾汉念, 王宁, 刘世荣, 等. 烧结法赤泥的物质组成与颗粒特征研究[J]. 岩矿测试, 2012, 31(2): 312-317. doi: 10.3969/j.issn.0254-5357.2012.02.022 [11] 魏婧婧, 王东波, 潘静, 等. 微波煅烧酸活化改性赤泥的制备及其除Cr(Ⅵ)性能研究[J]. 广西大学学报(自然科学版), 2015, 40(5): 1323-1329. [12] 赵雅琴. 新型赤泥颗粒吸附材料的制备、表征及其对水体中磷的去除性能研究[D]. 济南: 山东大学, 2013. [13] 薛生国, 李晓飞, 孔祥峰, 等. 赤泥碱性调控研究进展[J]. 环境科学学报, 2017, 37(8): 2815-2828. [14] 卓九凤. 赤泥对水中重金属Cr(VI)吸附的研究[D]. 太原: 太原理工大学, 2010. [15] 李晓光, 赵颖, 卓锦德, 等. 赤泥基Na型分子筛的制备及其去除氨氮性能研究[J]. 硅酸盐通报, 2018, 37(11): 3700-3706. [16] 李明, 王章鸿, 沈德魁. 木质素基活性炭对Pb(Ⅱ)离子的吸附性能研究[J]. 热能动力工程, 2018, 33(8): 61-68. [17] 柳健, 徐雅迪, 任拥政. 化学沉淀法处理含铅废水的最佳工况研究[J]. 环境工程, 2015, 33(S1): 25-28. [18] FRANCIS R I, 李新颖, 陈泉源. 含铅离子模拟废水沉淀处理理论分析及产物表征[J]. 矿冶工程, 2011(6): 82-87. doi: 10.3969/j.issn.0253-6099.2011.06.022 [19] ASCENSAO G, SRABRA M P, AGUIAR J B, et al. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability[J]. Journal of Cleaner Production, 2017, 148: 23-30. doi: 10.1016/j.jclepro.2017.01.150 [20] 叶捷. 活化赤泥制备及其磷酸盐吸附性能与机理研究[D]. 长沙: 湖南大学, 2015. [21] 饶正勇. 赤泥中金属元素分析和CTAB/STAB改性赤泥吸附Cr(Ⅵ)的研究[D]. 郑州: 河南大学, 2012.