-
氮氧化物(NOx)不仅具有很强的毒性,而且还是酸雨和光化学烟雾的重要源头之一,给人类健康和生态环境带来极大威胁[1-2] 。烟气脱硝技术一直是环境治理领域的重要研究方向之一。目前,工业中较成熟的NOx的脱除方法主要包括选择性催化还原法(selective catalytic reduction, SCR)[3]和选择性非催化还原法(selective non-catalytic reduction, SNCR)[4]。但这2种烟气脱硝技术方法存在一些弊端,如设备占地面积大、反应成本高以及二次污染等[5-6]。相比之下,光催化氧化技术作为一种环境友好、投资费用少、反应条件温和的污染物去除方法,在NOx的净化中具有巨大潜能[7]。
在众多的光催化剂中,TiO2因其廉价易得、环境友好和催化活性高等特点颇受关注。近期研究表明,TiO2能够对NOx实现有效的光催化氧化降解[8],但是TiO2催化剂依然存在缺陷,其中难以利用可见光以及光生电子-空穴复合率高等问题严重制约了其在光催化脱硝过程中的应用和发展[9]。因此,对TiO2进行改性,使其能够在可见光驱动下实现有效的光生电子对分离具有重要的科学和现实意义。在过去的10年中,人们已成功实现了非金属元素以及过渡金属元素对TiO2的掺杂,研究发现,这些元素的掺杂不仅能够有效改善TiO2对可见光的吸收,还能在一定程度上缓解光生电子对复合率高的问题。NGUGEN等[9]成功制备了Cu掺杂TiO2纳米片,用于降解有机染料,发现Cu离子可作为界面电荷迁移的介质,从而降低电子-空穴复合率;TREVISAN等[10]研究发现,N元素的掺杂可有效提升TiO2的价带位置,使得带隙宽度有效降低,从而实现了对可见光的响应。然而对TiO2进行改性,仍然存在催化剂比表面积低的缺点,这将影响光催化性能的进一步提高。
鉴于此,将TiO2与碳材料复合,可在降解有机污染物方面表现出优异的性能[11]。碳纳米管(carbon nanotubes, CNTs)的高导电性可以提供电子通道,从而增加了电子湮灭长度,以防止电子-空穴的结合;可以在TiO2晶格中引入杂质能级,从而加速电子-空穴的分离[12];可以在TiO2晶格中引入杂质能级,从而加速电子-空穴的分离[13-14],同时碳纳米管可以有效增大TiO2的比表面积。因此,将CNTs与TiO2进行复合是一个很好的思路。
本研究将具有良好导电性的CNTs与具有良好储氧能力的Ce耦合,采用溶胶-凝胶法,制备出CNTs-Ce/TiO2系列复合光催化剂,并对其光催化脱硝性能进行测试;通过扫描电子显微镜 (SEM)、全自动微孔物理吸附-脱附 (BET)、X射线衍射 (XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和紫外可见漫反射谱(DRS)等技术,对复合材料进行结构表征和性能分析,以探讨光催化在烟气脱硝方面的应用潜力,为湿法脱硫后的脱硝的研究提供参考。
Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能
Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance
-
摘要: 为探讨湿法脱硫后光催化在烟气脱硝方面的应用潜力,采用溶胶-凝胶法制备了金属、非金属掺杂的CNTs-TiO2复合光催化剂,并在模拟烟气条件下对所得催化剂的NO氧化性能进行了测试与对比筛选,通过SEM、BET、XRD、Raman、XPS、DRS等手段进行表征。结果表明:TiO2的氧化效率最低,掺杂金属比掺杂非金属的光催化剂的氧化效率略高,复合CNTs的光催化剂的氧化效率明显提高;CNTs-Ce/TiO2比表面积较大,Ti—O键长最短,从而有利于光生电子沿Ti—O键向CNTs转移,可形成更多的三价铈氧化物,有利于催化剂表面的氧吸附;带隙宽度较低以及极大的紫外光吸光度,在NO氧化性能测试中表现出最优异的脱除效率,与TiO2相比,效率提升了19%,与CNTs-TiO2相比,效率提升了13%。进一步分析可知:Ce和CNTs具有协同作用,Ce掺杂TiO2可以有效抑制光生载流子的结合,从而提高光催化活性;复合CNTs提高了催化剂比表面积并促进了氧空位的形成,从而促进整个催化氧化反应。Abstract: In order to investigate the application potential of photocatalysis on flue gas denitration after wet desulfurization, metal and non-metal doped CNTs-TiO2 composite photocatalyst was prepared by sol-gel method, and the NO oxidation performance of the catalyst was tested and compared under simulated flue gas conditions. SEM, BET, XRD, Raman, XPS, DRS and other means were used to characterize the photocatalyst. The results showed that the oxidation efficiency of TiO2 was the lowest, the oxidation efficiency of photocatalyst doped with metal was slightly higher than that of photocatalyst doped with non-metal, and the oxidation efficiency of photocatalyst compounded with CNTs was significantly improved. Among above catalytic materials, CNTs-Ce/TiO2 had the larger specific surface area and the shortest Ti—O bond length, which facilitated the transfer of photo-generated electrons to CNTs along Ti—O bonds, formed more trivalent cerium oxides, and was conducive to the oxygen adsorption on the catalyst surface. Lower band gap width and great ultraviolet light absorbance showed the most excellent removal efficiency in NO oxidation performance test, and the efficiency increased by 19% compared with TiO2 and by 13% compared with CNTs-TiO2. According to the analysis, Ce and CNTs showed a synergistic effect. Ce doped TiO2 could effectively inhibit the combination of photogenic carriers, thus improving photocatalytic activity. Composite CNTs elevated the specific surface area of the catalyst and the formation of oxygen vacancies, thus promoting the whole catalytic oxidation reaction.
-
Key words:
- carbon nanotubes /
- TiO2 /
- flue gas denitration /
- photocatalytic
-
表 1 光催化剂的平均孔径与比表面积
Table 1. Specific surface area and pore size of photocatalysts
样品 比表面积/(m2·g−1) 平均孔径/nm TiO2 79.39 8.43 N/TiO2 53.43 7.73 CNTs-TiO2 89.42 8.44 CNTs-N/TiO2 94.43 8.66 Cu/TiO2 55.40 8.23 Ce/TiO2 127.12 6.87 CNTs-Cu/TiO2 81.23 8.47 CNTs-Ce/TiO2 144.12 8.97 表 2 样品的Ti—O键长及键长的缩短
Table 2. Ti—O bond length of samples and shortening of bond length
样品 拉曼位移/cm−1 Ti—O长度/nm 键长的变化/nm TiO2 144 0.261 0 CNTs-TiO2 146 0.260 0.001 CNTs-Ce/TiO2 150 0.258 0.003 -
[1] 高林, 李辉, 单历元, 等. 燃烧烟气脱硝技术的研究进展[J]. 化学工程, 2017, 45(3): 15-19. doi: 10.3969/j.issn.1005-9954.2017.05.004 [2] SHI Y, XIA Y F, LU B H, et al. Emission inventory and trends of NOx for China, 2000-2020[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2014, 15: 454-464. [3] VILLAMAINA R, NOVA I, TRONCONI E, et al. The deactivation of an NH3-SCR Cu-SAPO catalyst upon exposure to non-oxidizing conditions[J]. Applied Catalysis A: General, 2019, 580: 11-16. doi: 10.1016/j.apcata.2019.03.027 [4] DAOOD S S, JAVED M T, GIBBS B M, et al. NOx control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR[J]. Fuel, 2013, 105: 283-292. doi: 10.1016/j.fuel.2012.06.087 [5] ZHANG B, ZHONG Z P, FU Z M, et al. Experimental studies on photocatalytic oxidation of nitric oxides using titanium dioxide[J]. Journal of Southeast University, 2012, 28: 179-183. [6] 顾卫荣, 周明吉, 马薇. 燃煤烟气脱硝技术的研究进展[J]. 化工进展, 2012, 31(9): 2084-2092. [7] 董慧科, 王菲, 董慧裕, 等. TiO2光催化氧化脱除模拟烟气中的NOx[J]. 环境工程学报, 2015, 9(5): 2379-2385. doi: 10.12030/j.cjee.20150557 [8] SONG W, ZENG Y, WANG Y, et al. Photo-induced strong active component-support interaction enhancing NOx removal performance of CeO2/TiO2[J]. Applied Surface Science, 2019, 476: 834-839. doi: 10.1016/j.apsusc.2019.01.190 [9] NGUYEN D C T, CHO K Y, OH W C. Mesoporous CuO-graphene coating of mesoporous TiO2 for enhanced visible-light photocatalytic activity of organic dyes[J]. Separation and Purification Technology, 2019, 211: 646-657. doi: 10.1016/j.seppur.2018.10.009 [10] TREVISAN V, OLIVO A, PINNA F, et al. C-N/TiO2 photocatalysts: Effect of co-doping on the catalytic performance under visible light[J]. Applied Catalysis B: Environmental, 2014, 160: 152-160. [11] MATOS J, OCARES-RIQUELME J, POON P S, et al. C-doped anatase TiO2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations[J]. Journal of Colloid and Interface Science, 2019, 547: 14-29. doi: 10.1016/j.jcis.2019.03.074 [12] 杜瑞安, 马小帅, 张萌迪, 等. 多壁碳纳米管/TiO2复合材料的合成及其光催化性能研究[J]. 有色金属科学与工程, 2019, 10(5): 25-38. [13] XU C, XIE W, SI X, et al. Photocatalytic degradation of cooking fume on a TiO2-coated carbon nanotubes composite filter[J]. Environmental Research, 2018, 166: 167-174. doi: 10.1016/j.envres.2018.05.038 [14] WANG W, LU C, NI Y, et al. Fabrication of CNTs and GP/AuGP modified TiO2 photocatalyst with two-channel electron conduction path for significantly enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 129: 606-613. doi: 10.1016/j.apcatb.2012.10.014 [15] YAN N, ZHU Z, ZHANG J, et al. Preparation and properties of Ce-doped TiO2 photocatalyst[J]. Materials Research Bulletin, 2012, 47: 1869-1873. doi: 10.1016/j.materresbull.2012.04.077 [16] SILVA C G, FARIA J L. Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 81-89. [17] HU C, ZHANG R, XIANG J, et al. Synthesis of carbon nanotube/anatase titania composites by a combination of sol-gel and self-assembly at low temperature[J]. Journal of Solid State Chemistry, 2011, 184(5): 1286-1292. doi: 10.1016/j.jssc.2011.03.040 [18] DASIREDDY V D B C, LIKOZAR B. Selective photocatalytic oxidation of benzene to phenol using carbon nanotube (CNT)-supported Cu and TiO2 heterogeneous catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 331-341. doi: 10.1016/j.jtice.2017.11.011 [19] XIAO J, PENG T, I R, et al. Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles[J]. Journal of Solid State Chemistry, 2006, 179(4): 1161-1170. doi: 10.1016/j.jssc.2006.01.008 [20] TAN Z Q, SUN L S, XIANG J, et al. Gas-phase elemental mercury removal by novel carbon-based sorbents[J]. Carbon, 2012, 50(2): 362-371. doi: 10.1016/j.carbon.2011.08.036 [21] 王文一, 王恩霞, 霍腾波, 等. 碳纳米管负载二氧化钛的制备及其对甲基橙的光催化降解[J]. 天津工业大学学报, 2016, 35(6): 50-52. doi: 10.3969/j.issn.1671-024x.2016.01.010 [22] 王环颖, 李文军, 常志东, 等. 非共价修饰碳纳米管/二氧化钛复合材料的合成及性能[J]. 无机化学学报, 2011, 27(2): 269-275. [23] SHAARI N, TAN S H, MOHAMED A R. Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation[J]. Journal of Rare Earths, 2012, 30(7): 651-658. doi: 10.1016/S1002-0721(12)60107-0 [24] WANG S, PAN L, SONG J J, et al. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance[J]. Journal of the American Chemical Society, 2015, 137(8): 2975-2983. doi: 10.1021/ja512047k [25] ZHANG Z, TAN X, YU T, et al. Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11634-11643. doi: 10.1016/j.ijhydene.2015.12.200 [26] 张羽池. 黑色二氧化钛/碳纳米管复合材料的制备及其应用研究[D]. 哈尔滨: 黑龙江大学, 2017. [27] RUI Y, XIONG H, SU B, et al. Liquid-liquid interface assisted synthesis of SnO2 nanorods with tunable length for enhanced performance in dye-sensitized solar cells[J]. Electrocimica Acta, 2017, 227: 49-60. doi: 10.1016/j.electacta.2017.01.004 [28] MAHESWARI A U, ANJALI K K, SIVAKUMAR M. Optical absorption enhancement of PVP capped TiO2 nanostructures in the visible region[J]. Solid State Ionics, 2019, 337: 33-41. doi: 10.1016/j.ssi.2019.04.001 [29] YANG S X, ZHU W P, JIANG Z P, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006, 252(24): 8499-8505. doi: 10.1016/j.apsusc.2005.11.067 [30] DOLGONOS A, MASON T, POEPPELMEIER K. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method[J]. Journal of Solid State Chemistry, 2016, 240: 43-48. doi: 10.1016/j.jssc.2016.05.010 [31] THIRUPPATHI M, SENTHIL K P, DEVENDRAN P, et al. Ce-TiO2 nanocomposites: An efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium[J]. Journal of Alloys and Compounds, 2018, 735: 728-734. doi: 10.1016/j.jallcom.2017.11.139