[1] |
高林, 李辉, 单历元, 等. 燃烧烟气脱硝技术的研究进展[J]. 化学工程, 2017, 45(3): 15-19. doi: 10.3969/j.issn.1005-9954.2017.05.004
|
[2] |
SHI Y, XIA Y F, LU B H, et al. Emission inventory and trends of NOx for China, 2000-2020[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2014, 15: 454-464.
|
[3] |
VILLAMAINA R, NOVA I, TRONCONI E, et al. The deactivation of an NH3-SCR Cu-SAPO catalyst upon exposure to non-oxidizing conditions[J]. Applied Catalysis A: General, 2019, 580: 11-16. doi: 10.1016/j.apcata.2019.03.027
|
[4] |
DAOOD S S, JAVED M T, GIBBS B M, et al. NOx control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR[J]. Fuel, 2013, 105: 283-292. doi: 10.1016/j.fuel.2012.06.087
|
[5] |
ZHANG B, ZHONG Z P, FU Z M, et al. Experimental studies on photocatalytic oxidation of nitric oxides using titanium dioxide[J]. Journal of Southeast University, 2012, 28: 179-183.
|
[6] |
顾卫荣, 周明吉, 马薇. 燃煤烟气脱硝技术的研究进展[J]. 化工进展, 2012, 31(9): 2084-2092.
|
[7] |
董慧科, 王菲, 董慧裕, 等. TiO2光催化氧化脱除模拟烟气中的NOx[J]. 环境工程学报, 2015, 9(5): 2379-2385. doi: 10.12030/j.cjee.20150557
|
[8] |
SONG W, ZENG Y, WANG Y, et al. Photo-induced strong active component-support interaction enhancing NOx removal performance of CeO2/TiO2[J]. Applied Surface Science, 2019, 476: 834-839. doi: 10.1016/j.apsusc.2019.01.190
|
[9] |
NGUYEN D C T, CHO K Y, OH W C. Mesoporous CuO-graphene coating of mesoporous TiO2 for enhanced visible-light photocatalytic activity of organic dyes[J]. Separation and Purification Technology, 2019, 211: 646-657. doi: 10.1016/j.seppur.2018.10.009
|
[10] |
TREVISAN V, OLIVO A, PINNA F, et al. C-N/TiO2 photocatalysts: Effect of co-doping on the catalytic performance under visible light[J]. Applied Catalysis B: Environmental, 2014, 160: 152-160.
|
[11] |
MATOS J, OCARES-RIQUELME J, POON P S, et al. C-doped anatase TiO2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations[J]. Journal of Colloid and Interface Science, 2019, 547: 14-29. doi: 10.1016/j.jcis.2019.03.074
|
[12] |
杜瑞安, 马小帅, 张萌迪, 等. 多壁碳纳米管/TiO2复合材料的合成及其光催化性能研究[J]. 有色金属科学与工程, 2019, 10(5): 25-38.
|
[13] |
XU C, XIE W, SI X, et al. Photocatalytic degradation of cooking fume on a TiO2-coated carbon nanotubes composite filter[J]. Environmental Research, 2018, 166: 167-174. doi: 10.1016/j.envres.2018.05.038
|
[14] |
WANG W, LU C, NI Y, et al. Fabrication of CNTs and GP/AuGP modified TiO2 photocatalyst with two-channel electron conduction path for significantly enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 129: 606-613. doi: 10.1016/j.apcatb.2012.10.014
|
[15] |
YAN N, ZHU Z, ZHANG J, et al. Preparation and properties of Ce-doped TiO2 photocatalyst[J]. Materials Research Bulletin, 2012, 47: 1869-1873. doi: 10.1016/j.materresbull.2012.04.077
|
[16] |
SILVA C G, FARIA J L. Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 81-89.
|
[17] |
HU C, ZHANG R, XIANG J, et al. Synthesis of carbon nanotube/anatase titania composites by a combination of sol-gel and self-assembly at low temperature[J]. Journal of Solid State Chemistry, 2011, 184(5): 1286-1292. doi: 10.1016/j.jssc.2011.03.040
|
[18] |
DASIREDDY V D B C, LIKOZAR B. Selective photocatalytic oxidation of benzene to phenol using carbon nanotube (CNT)-supported Cu and TiO2 heterogeneous catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 331-341. doi: 10.1016/j.jtice.2017.11.011
|
[19] |
XIAO J, PENG T, I R, et al. Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles[J]. Journal of Solid State Chemistry, 2006, 179(4): 1161-1170. doi: 10.1016/j.jssc.2006.01.008
|
[20] |
TAN Z Q, SUN L S, XIANG J, et al. Gas-phase elemental mercury removal by novel carbon-based sorbents[J]. Carbon, 2012, 50(2): 362-371. doi: 10.1016/j.carbon.2011.08.036
|
[21] |
王文一, 王恩霞, 霍腾波, 等. 碳纳米管负载二氧化钛的制备及其对甲基橙的光催化降解[J]. 天津工业大学学报, 2016, 35(6): 50-52. doi: 10.3969/j.issn.1671-024x.2016.01.010
|
[22] |
王环颖, 李文军, 常志东, 等. 非共价修饰碳纳米管/二氧化钛复合材料的合成及性能[J]. 无机化学学报, 2011, 27(2): 269-275.
|
[23] |
SHAARI N, TAN S H, MOHAMED A R. Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation[J]. Journal of Rare Earths, 2012, 30(7): 651-658. doi: 10.1016/S1002-0721(12)60107-0
|
[24] |
WANG S, PAN L, SONG J J, et al. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance[J]. Journal of the American Chemical Society, 2015, 137(8): 2975-2983. doi: 10.1021/ja512047k
|
[25] |
ZHANG Z, TAN X, YU T, et al. Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11634-11643. doi: 10.1016/j.ijhydene.2015.12.200
|
[26] |
张羽池. 黑色二氧化钛/碳纳米管复合材料的制备及其应用研究[D]. 哈尔滨: 黑龙江大学, 2017.
|
[27] |
RUI Y, XIONG H, SU B, et al. Liquid-liquid interface assisted synthesis of SnO2 nanorods with tunable length for enhanced performance in dye-sensitized solar cells[J]. Electrocimica Acta, 2017, 227: 49-60. doi: 10.1016/j.electacta.2017.01.004
|
[28] |
MAHESWARI A U, ANJALI K K, SIVAKUMAR M. Optical absorption enhancement of PVP capped TiO2 nanostructures in the visible region[J]. Solid State Ionics, 2019, 337: 33-41. doi: 10.1016/j.ssi.2019.04.001
|
[29] |
YANG S X, ZHU W P, JIANG Z P, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006, 252(24): 8499-8505. doi: 10.1016/j.apsusc.2005.11.067
|
[30] |
DOLGONOS A, MASON T, POEPPELMEIER K. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method[J]. Journal of Solid State Chemistry, 2016, 240: 43-48. doi: 10.1016/j.jssc.2016.05.010
|
[31] |
THIRUPPATHI M, SENTHIL K P, DEVENDRAN P, et al. Ce-TiO2 nanocomposites: An efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium[J]. Journal of Alloys and Compounds, 2018, 735: 728-734. doi: 10.1016/j.jallcom.2017.11.139
|