-
印染行业是我国具有国际竞争力的传统优势产业,但同时也是典型的高能耗、高水耗、高污染行业。印染加工过程产生的废水(包括退浆废水、煮练废水、染色废水、印花废水和整理废水等)具有水量大、有机污染物含量高、水质变化大、废水回用率低等特点,是典型的难处理工业废水[1-2]。
聚乙烯醇(PVA)是一种水溶性高分子聚合物,因其具有良好的上浆性、黏附性和耐磨性而被广泛应用于纺织上浆工序。为得到均匀、持久的染色及后整理效果,织物上浆后须进行充分退浆,退浆过程产生的含PVA废水是一类水量小但污染物浓度高的印染废水,可生化性差,处理难度大[3]。目前,PVA退浆废水的处理方法主要包括物理法、化学法及生物法。通过超滤工艺处理PVA退浆废水可实现PVA的回收利用,但膜孔易堵塞,膜污染问题严重[4]。芬顿类氧化法须严格控制pH,反应时间等工艺条件,应用范围受限,且会产生大量铁泥,增加处理成本[5]。有研究者[6-7]通过选育和培养PVA高效降解菌来处理PVA退浆废水,但由于降解酶活性低,培养周期长,提取难度大,实际应用性受到一定的限制性。
铁炭微电解是一种基于金属腐蚀电化学基本原理,利用铁和炭浸泡在电解质溶液中形成无数微小原电池,由此引起电化学还原、电沉积、絮凝吸附等一系列作用的高效废水处理技术[8]。微电解反应产生的初生态Fe2+具有强还原性,可氧化废水中的某些基团,同时反应产生的新生态[·H]具有极高的化学活性,可以破坏废水中有机物的结构,可大幅提高废水的可生化性[9-10]。Fe2+、Fe3+还具有絮凝作用,可通过混凝和沉淀去除污染物,并加速颗粒污泥的颗粒化,促进厌氧消化[11-12]。此外,铁炭微电解中的铁屑还可以缓解厌氧反应器的有机酸积累,维持pH稳定[13]。铁炭微电解工艺因效果显著被广泛应用于印染、化工等难降解废水处理领域,但通常作为预处理技术与生物法等其他方法联用。联用工艺不仅消耗大量铁炭材料,还会出现铁屑锈蚀、板结以及大量剩余污泥产生等现象,且生物法水力停留时间(HRT)长,处理效率低[14]。鉴于此,本研究将铁炭材料与水解酸化技术有机结合,构建了新型铁炭耦合水解酸化反应器。将铁炭材料置于水解酸化反应器内部,以PVA模拟退浆废水为研究对象,通过逐步提高进水有机负荷,对比考察常规水解酸化反应器(R1,无铁炭材料)和铁炭耦合厌氧水解酸化反应器(R2,有铁炭材料)对PVA退浆废水的降解效果、颗粒污泥特性及VFAs差异变化的影响,并利用高通量测序研究不同负荷条件下微生物菌群结构变化,为铁炭微电解强化水解酸化反应器处理PVA退浆废水提供技术支持。
铁炭微电解强化水解酸化反应器高效处理聚乙烯醇废水
Efficient treatment of PVA wastewater by Fe-C microelectrolysis enhanced anaerobic hydrolysis acidification reactor
-
摘要: 以聚乙烯醇(PVA)退浆废水为研究对象,构建了铁炭微电解强化厌氧生物处理的废水处理系统,对比研究了不同负荷条件下常规水解酸化反应器(R1,无铁炭材料)和铁炭耦合厌氧水解酸化反应器(R2,有铁炭材料)对PVA退浆废水的去除效果、颗粒污泥特性(胞外聚合物(EPS))、挥发性脂肪酸(VFAs)组成及微生物群落结构的差异。结果表明:R2出水平均COD去除率和平均PVA去除率分别稳定在86.8%和75.8%,均优于R1;添加铁炭材料可促进丙酸、丁酸转化成乙酸,提高了乙酸产量;R2颗粒污泥紧密黏附EPS(TB-EPS)、松散附着EPS(LB-EPS)含量较R1有所增加,颗粒污泥结构得到优化。高通量测序结果表明,添加铁炭对水解酸化菌群有显著影响,Propionibacteriaceae、Clostridium sensu stricto 12在PVA的降解中起重要作用。综合上述结果,铁炭微电解可有效强化水解酸化反应器对PVA退浆废水的处理效果,研究结果可为厌氧生物法处理PVA退浆废水提供参考。Abstract: In this study, a Fe-C microelectrolysis enhanced hydrolysis acidification reactor was built to treat the PVA desizing wastewater. Under different laoding conditions, two parallel reactors, such as a common hydrolysis acidification reactors (R1) and a hydrolysis acidification reactor with built-in iron carbon (R2), were used to compare their removal performances, granular sludge characteristics(Extrocelluar polymer substances (EPS)), volatile fatty acid (VFA) compositions and microbial community structure. The results showed that the average COD and PVA removal efficiencies in R2 effluent maintained 86.8% and 75.8%, respectively, which were higher than R1. The addition of iron-carbon promoted the transformation of propionate and butyrate into acetate, raised acetate production. Compared with R1, the contents of tightly bound EPS (TB-EPS) and the loosely bound EPS (LB-EPS) in granular sludge of R2 increased, and the corresponding granular sludge structure was optimized. The high-throughput sequencing analysis indicated that the addition of iron-carbon had a significant effect on the hydrolysis acidification microflora, and Propionibacteriaceae and Clostridium sensu stricto 12 in R2 played important roles in PVA degradation. To summarize, Fe-C microelectrolysis could effectively enhance the performance of hydrolysis acidification reactor treating PVA desizing wastewater, and provide reference of anaerobic biotreatment method on PVA desizing wastewater treatment.
-
表 1 实验进水水质
Table 1. Characteristics of the influent wastewater
运行时间/d 主要成分 COD/(mg·L−1) NH4Cl/(mg·L−1) K2H4PO4/(mg·L−1) CaCl2/(mg·L−1) MgSO4·7H2O/(mg·L−1) 1~20 20%PVA溶液+80%淀粉溶液 1 500 37.5 7.5 16 15 20~30 40%PVA溶液+60%淀粉溶液 2 500 62.5 12.5 16 15 30~110 60%PVA溶液+40%淀粉溶液 3 000 75 15 16 15 表 2 R1和R2出水中PVA的相对分子质量
Table 2. Relative molecular mass of PVA in the effluents of R1 and R2
反应器 峰尖相对
分子质量
(Mp)数均相对
分子质量
(Mn)重均相对
分子质量
(Mw)黏均相对
分子质量
(Mv)R1 85 000 45 811 96 343 88 124 R2 56 665 34 009 66 404 60 994 -
[1] WANG C Q, CAO Y J, WANG H. Copper-based catalyst from waste printed circuit boards for effective Fenton-like discoloration of Rhodamine B at neutral pH[J]. Chemosphere, 2019, 230: 278-285. doi: 10.1016/j.chemosphere.2019.05.068 [2] LIU M, SHADBEGIAN R, ZHANG B. Does environmental regulation affect labor demand in China? Evidence from the textile printing and dyeing industry[J]. Journal of Environmental Economics and Management, 2017, 86: 277-294. doi: 10.1016/j.jeem.2017.05.008 [3] LIU R R, TIAN Q, YANG B, et al. Hybrid anaerobic baffled reactor for treatment of desizing wastewater[J]. International journal of Environmental Science and Technology, 2010, 7(1): 111-118. doi: 10.1007/BF03326122 [4] RAVAL H D, CHAUHAN V R, RAVAL A H, et al. Rejuvenation of discarded RO membrane for new applications[J]. Desalination and Water Treatment, 2012, 48(1/2/3): 349-359. [5] ARCHINA B, SHAH R E S R S, ANAM A, et al. Textile wastewater treatment efficiency by Fenton oxidation with integration of membrane separation system[J]. Chemical Engineering Communications, 2018, 206: 541-557. [6] HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management, 2016, 182: 351-366. [7] SHIMAO M, KISHIDA S, HARAYAMA S, et al. The gene pvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene pvaA[J]. Microbiology, 2000, 146(3): 649-657. doi: 10.1099/00221287-146-3-649 [8] ZHANG Y B, LIU Y W, JING Y W, et al. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality[J]. Journal of Environmental Sciences, 2012, 24(4): 720-727. doi: 10.1016/S1001-0742(11)60803-6 [9] 潘碌亭, 吴锦峰, 王键, 等. 铁炭微电解-水解酸化-接触氧化法处理有机硅废水的研究[J]. 环境工程学报, 2010, 4(3): 595-598. [10] 刘莉莉, 刘瑞红, 陈轶伦, 等. 铁碳微电解与微生物共作用降解BDE-209[J]. 环境工程学报, 2015, 9(12): 6161-6166. [11] CHAO H, FEN P, HAI J G, et al. Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: Long-term study and scale up[J]. Chemical Engineering Journal, 2018, 351: 697-707. doi: 10.1016/j.cej.2018.06.139 [12] 陈骁, 漆新华. 铁碳微电解填料制备及其对亚甲基蓝的降解[J]. 环境工程学报, 2017, 11(4): 2041-2046. [13] HU S G, HU J P, LIU B C, et al. In situ generation of zero valent iron for enhanced hydroxyl radical oxidation in an electrooxidation system for sewage sludge dewatering[J]. Water Research, 2018, 145: 162-171. doi: 10.1016/j.watres.2018.08.027 [14] ZHAO Z S, ZHANG Y B, LI Y, et al. Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion[J]. Water Research, 2018, 144: 126-133. doi: 10.1016/j.watres.2018.07.028 [15] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. [16] BUGADA D C, RUUDINA. Characterization of polyvinyl alcohol[J]. Journal of Applied Polymer Science, 1985, 30(10): 4137-4147. doi: 10.1002/app.1985.070301015 [17] LARKING D M. Enhanced degradation of polyvinyl alcohol by Pycnoporus cinnabarinus after pretreatment with Fenton’s reagent[J]. Applied and Environmental Microbiology, 1999, 65(4): 1798-1800. doi: 10.1128/AEM.65.4.1798-1800.1999 [18] 唐一, 胡纪萃. 辅酶F420作为厌氧污泥活性指标的研究[J]. 中国沼气, 1990, 8(1): 11-15. [19] ZHEN G Y, LU X Q, LI Y Y, et al. Innovative combination of electrolysis and Fe(Ⅱ)-activated persulfate oxidation for improving the dewaterability of waste activated sludge[J]. Bioresource Technology, 2013, 136: 654-663. doi: 10.1016/j.biortech.2013.03.007 [20] WALKER J M. The Protein Protocols Handbook[M]. New York: Humana Press Inc., 2009. [21] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [22] YANG B, XU H, WANG J, et al. Bacterial and archaeal community distribution and stabilization of anaerobic sludge in a strengthen circulation anaerobic (SCA) reactor for municipal wastewater treatment[J]. Bioresource Technology, 2017, 244: 750-758. doi: 10.1016/j.biortech.2017.08.040 [23] 宿程远, 郑鹏, 卢宇翔, 等. 磁性纳米铁对厌氧颗粒污泥特性及其微生物群落的影响[J]. 环境科学, 2018, 39(3): 1316-1324. [24] VONGVICHIANKUL C, DEEBAO J, KHONGNAKORN W. Relationship between pH, oxidation reduction potential (ORP) and biogas production in mesophilic screw anaerobic digester[J]. Energy Procedia, 2017, 138: 877-882. doi: 10.1016/j.egypro.2017.10.113 [25] DING L, XU X, ZHANG J, et al. Performance of oxidation-reduction potential-based hydrolysis and acidification process for high-strength antibiotic wastewater treatment[J]. Desalination & Water Treatment, 2016, 57(16): 7287-7292. [26] WANG L, ZHOU Q, LI F T. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production[J]. Biomass and Bioenergy, 2006, 30(2): 177-182. doi: 10.1016/j.biombioe.2005.11.010 [27] ZHANG Y, AN X, QUAN X. Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation[J]. Process Biochemistry, 2011, 46(2): 471-476. doi: 10.1016/j.procbio.2010.09.021 [28] WEI W, ZHENG Q C, JIE F, et al. Zero valent iron enhances methane production from primary sludge in anaerobic digestion[J]. Chemical Engineering Journal, 2018, 351: 1159-1165. doi: 10.1016/j.cej.2018.06.160 [29] MENG X, ZHANG Y, LI Q, et al. Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate[J]. Biochemical Engineering Journal, 2013, 73: 80-85. doi: 10.1016/j.bej.2013.02.004 [30] BENGTSON S, HALLQUIST J, WERKER A, et al. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production[J]. Biochemical Engineering Journal, 2008, 40(3): 492-499. doi: 10.1016/j.bej.2008.02.004 [31] WEI J, HAO X, LOOEDRECHT M C M V, et al. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review[J]. Renewable & Sustainable Energy Reviews, 2018, 89: 16-26. [32] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 [33] ZHANG Z, GAO P, CHENG J, et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator[J]. Water Research, 2018, 136: 54-63. doi: 10.1016/j.watres.2018.02.025 [34] 杨波, 徐辉, 冯修平, 等. SCAR处理城市生活污水的效能及其微生物群落动态分析[J]. 环境科学, 2017, 38(5): 2022-2029. [35] XIAO X, SHENG G P, MU Y, et al. A modeling approach to describe ZVI-based anaerobic system[J]. Water Research, 2013, 47(16): 6007-6013. doi: 10.1016/j.watres.2013.07.025 [36] XU H, LIU Y B, GAO Y Y, et al. Granulation process in an expanded granular sludge blanket (EGSB) reactor for domestic sewage treatment: Impact of extracellular polymeric substances compositions and evolution of microbial population[J]. Bioresource Technology, 2018, 269: 153-161. doi: 10.1016/j.biortech.2018.08.100 [37] YANG B, XU H, YANG S N, et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor[J]. Bioresource Technology, 2018, 264: 154-162. doi: 10.1016/j.biortech.2018.05.063 [38] YANG B, XU H, WANG J, et al. Performance evaluation of anaerobic baffled reactor (ABR) for treating alkali-decrement wastewater of polyester fabrics at incremental organic loading rates[J]. Water Science and Technology, 2018, 77(10): 2445-2453. doi: 10.2166/wst.2018.194 [39] COLLADO N, BUTTIGLIER G, MARTI E, et al. Effects on activated sludge bacterial community exposed to sulfamethoxazole[J]. Chemosphere, 2013, 93(1): 99-106. doi: 10.1016/j.chemosphere.2013.04.094 [40] ISLAM R, CICEK N, SPARLING R, et al. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405[J]. Applied Microbiology and Biotechnology, 2006, 72(3): 576-583. doi: 10.1007/s00253-006-0316-7