[1] |
WANG C Q, CAO Y J, WANG H. Copper-based catalyst from waste printed circuit boards for effective Fenton-like discoloration of Rhodamine B at neutral pH[J]. Chemosphere, 2019, 230: 278-285. doi: 10.1016/j.chemosphere.2019.05.068
|
[2] |
LIU M, SHADBEGIAN R, ZHANG B. Does environmental regulation affect labor demand in China? Evidence from the textile printing and dyeing industry[J]. Journal of Environmental Economics and Management, 2017, 86: 277-294. doi: 10.1016/j.jeem.2017.05.008
|
[3] |
LIU R R, TIAN Q, YANG B, et al. Hybrid anaerobic baffled reactor for treatment of desizing wastewater[J]. International journal of Environmental Science and Technology, 2010, 7(1): 111-118. doi: 10.1007/BF03326122
|
[4] |
RAVAL H D, CHAUHAN V R, RAVAL A H, et al. Rejuvenation of discarded RO membrane for new applications[J]. Desalination and Water Treatment, 2012, 48(1/2/3): 349-359.
|
[5] |
ARCHINA B, SHAH R E S R S, ANAM A, et al. Textile wastewater treatment efficiency by Fenton oxidation with integration of membrane separation system[J]. Chemical Engineering Communications, 2018, 206: 541-557.
|
[6] |
HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management, 2016, 182: 351-366.
|
[7] |
SHIMAO M, KISHIDA S, HARAYAMA S, et al. The gene pvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene pvaA[J]. Microbiology, 2000, 146(3): 649-657. doi: 10.1099/00221287-146-3-649
|
[8] |
ZHANG Y B, LIU Y W, JING Y W, et al. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality[J]. Journal of Environmental Sciences, 2012, 24(4): 720-727. doi: 10.1016/S1001-0742(11)60803-6
|
[9] |
潘碌亭, 吴锦峰, 王键, 等. 铁炭微电解-水解酸化-接触氧化法处理有机硅废水的研究[J]. 环境工程学报, 2010, 4(3): 595-598.
|
[10] |
刘莉莉, 刘瑞红, 陈轶伦, 等. 铁碳微电解与微生物共作用降解BDE-209[J]. 环境工程学报, 2015, 9(12): 6161-6166.
|
[11] |
CHAO H, FEN P, HAI J G, et al. Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: Long-term study and scale up[J]. Chemical Engineering Journal, 2018, 351: 697-707. doi: 10.1016/j.cej.2018.06.139
|
[12] |
陈骁, 漆新华. 铁碳微电解填料制备及其对亚甲基蓝的降解[J]. 环境工程学报, 2017, 11(4): 2041-2046.
|
[13] |
HU S G, HU J P, LIU B C, et al. In situ generation of zero valent iron for enhanced hydroxyl radical oxidation in an electrooxidation system for sewage sludge dewatering[J]. Water Research, 2018, 145: 162-171. doi: 10.1016/j.watres.2018.08.027
|
[14] |
ZHAO Z S, ZHANG Y B, LI Y, et al. Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion[J]. Water Research, 2018, 144: 126-133. doi: 10.1016/j.watres.2018.07.028
|
[15] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
|
[16] |
BUGADA D C, RUUDINA. Characterization of polyvinyl alcohol[J]. Journal of Applied Polymer Science, 1985, 30(10): 4137-4147. doi: 10.1002/app.1985.070301015
|
[17] |
LARKING D M. Enhanced degradation of polyvinyl alcohol by Pycnoporus cinnabarinus after pretreatment with Fenton’s reagent[J]. Applied and Environmental Microbiology, 1999, 65(4): 1798-1800. doi: 10.1128/AEM.65.4.1798-1800.1999
|
[18] |
唐一, 胡纪萃. 辅酶F420作为厌氧污泥活性指标的研究[J]. 中国沼气, 1990, 8(1): 11-15.
|
[19] |
ZHEN G Y, LU X Q, LI Y Y, et al. Innovative combination of electrolysis and Fe(Ⅱ)-activated persulfate oxidation for improving the dewaterability of waste activated sludge[J]. Bioresource Technology, 2013, 136: 654-663. doi: 10.1016/j.biortech.2013.03.007
|
[20] |
WALKER J M. The Protein Protocols Handbook[M]. New York: Humana Press Inc., 2009.
|
[21] |
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
|
[22] |
YANG B, XU H, WANG J, et al. Bacterial and archaeal community distribution and stabilization of anaerobic sludge in a strengthen circulation anaerobic (SCA) reactor for municipal wastewater treatment[J]. Bioresource Technology, 2017, 244: 750-758. doi: 10.1016/j.biortech.2017.08.040
|
[23] |
宿程远, 郑鹏, 卢宇翔, 等. 磁性纳米铁对厌氧颗粒污泥特性及其微生物群落的影响[J]. 环境科学, 2018, 39(3): 1316-1324.
|
[24] |
VONGVICHIANKUL C, DEEBAO J, KHONGNAKORN W. Relationship between pH, oxidation reduction potential (ORP) and biogas production in mesophilic screw anaerobic digester[J]. Energy Procedia, 2017, 138: 877-882. doi: 10.1016/j.egypro.2017.10.113
|
[25] |
DING L, XU X, ZHANG J, et al. Performance of oxidation-reduction potential-based hydrolysis and acidification process for high-strength antibiotic wastewater treatment[J]. Desalination & Water Treatment, 2016, 57(16): 7287-7292.
|
[26] |
WANG L, ZHOU Q, LI F T. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production[J]. Biomass and Bioenergy, 2006, 30(2): 177-182. doi: 10.1016/j.biombioe.2005.11.010
|
[27] |
ZHANG Y, AN X, QUAN X. Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation[J]. Process Biochemistry, 2011, 46(2): 471-476. doi: 10.1016/j.procbio.2010.09.021
|
[28] |
WEI W, ZHENG Q C, JIE F, et al. Zero valent iron enhances methane production from primary sludge in anaerobic digestion[J]. Chemical Engineering Journal, 2018, 351: 1159-1165. doi: 10.1016/j.cej.2018.06.160
|
[29] |
MENG X, ZHANG Y, LI Q, et al. Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate[J]. Biochemical Engineering Journal, 2013, 73: 80-85. doi: 10.1016/j.bej.2013.02.004
|
[30] |
BENGTSON S, HALLQUIST J, WERKER A, et al. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production[J]. Biochemical Engineering Journal, 2008, 40(3): 492-499. doi: 10.1016/j.bej.2008.02.004
|
[31] |
WEI J, HAO X, LOOEDRECHT M C M V, et al. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review[J]. Renewable & Sustainable Energy Reviews, 2018, 89: 16-26.
|
[32] |
SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
|
[33] |
ZHANG Z, GAO P, CHENG J, et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator[J]. Water Research, 2018, 136: 54-63. doi: 10.1016/j.watres.2018.02.025
|
[34] |
杨波, 徐辉, 冯修平, 等. SCAR处理城市生活污水的效能及其微生物群落动态分析[J]. 环境科学, 2017, 38(5): 2022-2029.
|
[35] |
XIAO X, SHENG G P, MU Y, et al. A modeling approach to describe ZVI-based anaerobic system[J]. Water Research, 2013, 47(16): 6007-6013. doi: 10.1016/j.watres.2013.07.025
|
[36] |
XU H, LIU Y B, GAO Y Y, et al. Granulation process in an expanded granular sludge blanket (EGSB) reactor for domestic sewage treatment: Impact of extracellular polymeric substances compositions and evolution of microbial population[J]. Bioresource Technology, 2018, 269: 153-161. doi: 10.1016/j.biortech.2018.08.100
|
[37] |
YANG B, XU H, YANG S N, et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor[J]. Bioresource Technology, 2018, 264: 154-162. doi: 10.1016/j.biortech.2018.05.063
|
[38] |
YANG B, XU H, WANG J, et al. Performance evaluation of anaerobic baffled reactor (ABR) for treating alkali-decrement wastewater of polyester fabrics at incremental organic loading rates[J]. Water Science and Technology, 2018, 77(10): 2445-2453. doi: 10.2166/wst.2018.194
|
[39] |
COLLADO N, BUTTIGLIER G, MARTI E, et al. Effects on activated sludge bacterial community exposed to sulfamethoxazole[J]. Chemosphere, 2013, 93(1): 99-106. doi: 10.1016/j.chemosphere.2013.04.094
|
[40] |
ISLAM R, CICEK N, SPARLING R, et al. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405[J]. Applied Microbiology and Biotechnology, 2006, 72(3): 576-583. doi: 10.1007/s00253-006-0316-7
|