-
为减少SO2的排放量,许多国内外学者[1-4]对脱硫技术进行了探索和研究。据统计,我国每年SO2的排放量均超过了2×107 t[5-7],SO2已成为当前排放量较大的主要大气污染物。在环境保护部颁布《火电厂大气污染物排放标准》[8]后,一些脱硫技术[9-10]对减少SO2的排放起到了一定的作用。根据脱硫剂形态的不同,可将烟气脱硫技术分为干法烟气脱硫、半干法烟气脱硫以及湿法烟气脱硫技术3种[11]。其中,湿法烟气脱硫技术被认为是最有效的控制技术之一,目前在全世界范围内得到了广泛的应用[12-15],湿法烟气脱硫技术主要包括石灰石-石膏法[16]、海水烟气脱硫法、双碱法、氨法[17]、氧化镁法[18-20]、微生物法[21],但这些方法具有占地面积大、脱硫效率低等缺点。
磷矿浆脱硫是一种新型的脱硫方法,磷矿浆中的过渡金属Fe3+对脱硫反应起催化作用[22-23],它比目前企业常用的石灰石-石膏法脱硫的经济成本低,适合有燃煤锅炉、磷化工的企业。该方法以磷矿浆作为吸收剂,SO2通入磷矿浆后,在O2及H2O的作用下生成硫酸,生成的硫酸与磷矿浆里的Fe2O3和CaMg(CO3)2进一步反应生成Fe3+、Ca2+和Mg2+等。这些产物可进行回收利用,在脱硫过程中磷矿浆得到了资源再利用[24-26]。
超声波具有方向性好、功率大、穿透力强、能引起空化作用等特点[27]。超声波雾化器利用电子高频振荡,通过雾化片的高频谐振产生超声波,在超声波的空化作用下,液体分子间的作用力被破坏,雾化介质被打散,形成分散均匀的微米级的高密度微小雾滴[28-32]。超声波雾化所产生的雾滴喷射速度低,因而初速度为零,能维持较稳定的状态,易产生高浓度细小的液滴流,此时,雾滴与烟气接触面积增大,停留时间延长,有利于烟气中SO2与雾滴的反应[33-34]。超声波强化气固相催化过程的报道[35-37]表明,超声波能使多相催化反应的单程转化率提高近10倍,对多相催化反应效果非常明显。
本研究采用超声波雾化技术对磷矿浆湿法脱硫进行强化,针对吸收温度、进气流量、固液比、雾化功率、pH,探讨超声波雾化作用对磷矿浆脱硫效果的影响,为实现烟气中SO2的净化与磷矿的资源化提供参考。
超声波雾化技术对磷矿浆脱硫强化的影响分析
Analysis on influence of ultrasonic atomization technology on desulfurization enhancement of phosphate rock slurry
-
摘要: 为了对磷矿浆湿法脱硫技术进行强化,实验将超声波雾化技术应用于磷矿浆脱硫,考察了吸收温度、进气流量、固液比、雾化功率、pH对脱硫效率的影响。结果表明:在SO2进口浓度为1 500 mg·m−3、氧含量为15%、进气流量为0.3 L·min−1、吸收温度为35 ℃、固液比为25∶100、雾化功率为30 W的最佳条件下,磷矿浆脱硫率≥90%的反应时间可持续在620 min以上。经过对反应前后的磷矿粉及吸收液的分析,得出反应过程中一些离子及元素的变化规律。该工艺操作简便,对SO2净化效率高,原料价廉易得,同时可副产磷肥,有助于实现烟气中SO2的净化与磷矿的资源化。Abstract: In order to strengthen the wet desulfurization technology of phosphate rock slurry, the ultrasonic atomization technology was applied to the desulfurization of phosphate rock slurry. Then the effects of absorption temperature, intake flow rate, solid-liquid ratio, atomization power and pH on the desulfurization efficiency were investigated. The result showed that under the optimum conditions as follows: SO2 intake concentration of 1 500 mg·m−3, 15% O2 in the simulated flue gas was, intake flow rate of 0.3 L·min−1, absorption temperature of 35 ℃, solid-liquid ratio of 25∶100 and atomization power of 30 W, the reaction time with the removal efficiency higher than 90% could maintained longer than 620 min. After analyzing the phosphate rock and the absorption liquid before and after the reaction, the changes of some ions and elements during the reaction process were determined. The technology is simple and convenient to operate and has high SO2 purification efficiency, its raw materials are cheap and available, and it can produce the by-product of phosphate fertilizer, which will facilitate the implement of SO2 purification in flue gas and resource utilization of phosphate rock.
-
Key words:
- phosphorus rock slurry /
- catalytic oxidation /
- ultrasonic atomization /
- desulfurization
-
表 1 正交实验因素和水平
Table 1. Factors and levels of orthogonal experiment
水平 因素 (A)吸收温度/℃ (B)固液比 (C)进气流量/(L·min−1) 1 20 10∶100 0.3 2 25 15∶100 0.5 3 30 20∶100 0.7 4 35 25∶100 1.0 注:固液比为磷矿粉质量(g)与蒸馏水体积(mL)的比值。 表 2 正交实验结果
Table 2. Result of orthogonal experiment
序号 (A)吸收
温度/℃(B)固液比 (C)进气流量/
(L·min−1)脱硫率/% 1 20 10∶100 0.3 90.1 2 20 15∶100 0.5 93.0 3 20 20∶100 0.7 91.7 4 20 25∶100 1.0 84.7 5 25 10∶100 0.5 94.3 6 25 15∶100 0.3 94.5 7 25 20∶100 1.0 86.9 8 25 25∶100 0.7 93.2 9 30 10∶100 0.7 91.6 10 30 15∶100 1.0 85.0 11 30 20∶100 0.3 95.5 12 30 25∶100 0.5 95.9 13 35 10∶100 1.0 86.8 14 35 15∶100 0.7 92.3 15 35 20∶100 0.5 93.8 16 35 25∶100 0.3 98.6 K1 359.5 362.8 376 — K2 368.9 364.8 377 — K3 368 367.9 368.8 — K4 368.8 369.7 343.4 — k1 89.9 90.5 94 — k2 92.2 91.2 94.3 — k3 92 91.9 92.2 — k4 92.2 92.4 85.9 — R 2.3 1.9 8.4 — 注:固液比为磷矿粉质量(g)与蒸馏水体积(mL)的比值。 表 3 反应前后矿粉的成分(质量分数)
Table 3. Composition of phosphate rock before and after reaction(percentage of mass)
% 阶段 CaMg(CO3)2 P2O5 SiO2 Fe2O3 Al2O3 其他 反应前 58.075 23.517 14.269 1.583 1.579 0.977 反应后 57.689 23.451 13.783 1.566 1.520 1.991 表 4 反应前、后吸收液的主要成分
Table 4. Main composition of the absorption liquid before and after the reaction
反应时间/h Ca2+浓度/(mol·L−1) Mg2+浓度/(mol·L−1) Fe3+浓度/(mol·L−1) ${\rm{SO}}_4^{2 - }$ 浓度/(mol·L−1)0 431 240 0.68 689.5 2 445 278 0.83 697.8 4 526 314 0.91 688.8 6 728 436 1.05 744.7 -
[1] ZHONG Y, GAO X, HUO W, et al. A model for performance optimization of wet flue gas desulfurization systems of power plants[J]. Fuel Processing Technology, 2008, 89(11): 1025-1032. doi: 10.1016/j.fuproc.2008.04.004 [2] HRASTEL I, GERBEC M, STERGARŠEK A. Technology optimization of wet flue gas desulfurization process[J]. Chemical Engineering & Technology, 2010, 30(2): 220-233. [3] 李春情, 马丽萍, 晏晓丹, 等. 脱硫石膏与碳酸铵反应过程及反应机理[J]. 环境工程学报, 2015, 9(7): 3441-3447. doi: 10.12030/j.cjee.20150759 [4] WARYCH J, SZYMANOWSKI M. Optimum values of process parameters of the “wet limestone flue gas desulfurization system”[J]. Chemical Engineering & Technology, 2015, 25(4): 427-432. [5] 贾锋平, 王刚. 我国二氧化硫排放现状分析[J]. 宁波节能, 2017(5): 20-28. [6] 侯党社. 空气污染现状及咸阳市大气中SO2浓度变化研究[J]. 宝鸡文理学院学报(自然科学版), 2018, 38(2): 40-48. [7] 陈滑维, 蔡浩洋, 张阳. 我国部分地区大气污染现状及其分布特征[J]. 中国环境管理干部学院学报, 2017, 27(4): 68-72. [8] 桑绮, 乐园园, 徐晗. 火电厂大气污染物排放标准、现状及减排技术[J]. 浙江电力, 2011, 30(12): 42-46. doi: 10.3969/j.issn.1007-1881.2011.12.012 [9] YE W Q, LI Y J, KONG L, et al. Feasibility of flue-gas desulfurization by manganese oxides[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 3089-3094. doi: 10.1016/S1003-6326(13)62838-1 [10] 唐杰林. 燃煤烟气脱硫脱硝技术研究进展[J]. 化工管理, 2016(32): 156-156. doi: 10.3969/j.issn.1008-4800.2016.32.122 [11] 苗强. 燃煤脱硫技术研究现状及发展趋势[J]. 洁净煤技术, 2015, 21(2): 59-63. [12] JIN D S, DESHWAL B R, PARK Y S, et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. Journal of Hazardous Materials, 2006, 135(1): 412-417. [13] NOLAN P S, REDINGER K E, AMRHEIN G T, et al. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems[J]. Fuel Processing Technology, 2004, 85(6): 587-600. [14] NYGAARD H G, KIIL S, JOHNSSON J E, et al. Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber[J]. Fuel, 2004, 83(9): 1151-1164. doi: 10.1016/j.fuel.2003.12.007 [15] BAO J, YANG L, YAN J. Experimental study on demercurization performance of wet flue gas desulfurization system[J]. Chinese Journal of Chemistry, 2009, 27(11): 2242-2248. doi: 10.1002/cjoc.200990376 [16] CÓRDOB A, PATRICI A. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs[J]. Fuel, 2015, 144: 274-286. doi: 10.1016/j.fuel.2014.12.065 [17] GAO X, DING H L, DU Z, et al. Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization[J]. Applied Energy, 2010, 87(8): 2647-2651. doi: 10.1016/j.apenergy.2010.03.023 [18] SHEN Z G, CHEN X, TONG M, et al. Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct[J]. Fuel, 2013, 105: 578-584. doi: 10.1016/j.fuel.2012.07.050 [19] ZHU J, YE S C, BAI J, et al. A concise algorithm for calculating absorption height in spray tower for wet limestone-gypsum flue gas desulfurization[J]. Fuel Processing Technology, 2015, 129: 15-23. doi: 10.1016/j.fuproc.2014.07.002 [20] 左莉娜, 贺前锋, 刘德华. 湿法烟气脱硫技术研究进展[J]. 环境工程, 2013, 31(S1): 412-416. [21] 魏明俐, 杜延军, 刘松玉, 等. 磷矿粉稳定铅污染土的溶出特性研究[J]. 岩土工程学报, 2014, 36(4): 768-774. doi: 10.11779/CJGE201404024 [22] 刘智安, 张知见, 刘启旺. 液相生化法烟气脱硫机理及动力学[J]. 应用基础与工程科学学报, 2011, 19(4): 644-652. doi: 10.3969/j.issn.1005-0930.2011.04.014 [23] 王亮, 刘京春, 王力超, 等. 煤浆法烟气脱硫与Fe2+/Fe3+催化氧化脱硫工艺研究比较[J]. 科技信息, 2011(1): 30-30. [24] 贾丽娟, 张冬冬, 殷在飞, 等. 磷矿浆脱硫新技术及工业应用[J]. 磷肥与复肥, 2016, 31(3): 39-41. doi: 10.3969/j.issn.1007-6220.2016.03.015 [25] NIE Y X, LI S, WU C J, et al. Efficient removal of SO2 from flue gas with phosphate rock slurry and investigation of reaction mechanism[J]. Industrial & Engineering Chemistry Research, 2018, 57: 15138-15146. [26] 李创, 张冬冬, 宁平, 等. 无机、有机添加剂对磷矿浆脱硫强化的影响[J]. 环境工程学报, 2018, 12(7): 150-157. [27] LIU J, ZHANG P, LIU P, et al. Endothelial adhesion of targeted microbubbles in both small and great vessels using ultrasound radiation force[J]. Molecular Imaging, 2011, 11(1): 58-66. [28] 曾意翔. 超声波技术应用现状浅析[J]. 技术与市场, 2015, 22(11): 144-144. doi: 10.3969/j.issn.1006-8554.2015.11.090 [29] BHASARKAR J B, CHAKMA S, MOHOLKAR V S. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound[J]. Ultrasonics Sonochemistry, 2015, 24: 98-106. doi: 10.1016/j.ultsonch.2014.11.008 [30] 赵洪英, 蔡乐才. 超声波雾化器雾滴飞行时间的分析[J]. 四川理工学院学报(自然科学版), 2010, 23(1): 88-90. [31] 张文俊, 武明亮, 郭丽潇, 等. 超声雾化频率与雾化粒径关系的实验研究[J]. 压电与声光, 2013, 35(6): 886-888. doi: 10.3969/j.issn.1004-2474.2013.06.031 [32] 黄晖, 姚熹, 汪敏强, 等. 超声雾化系统的雾化性能测试[J]. 压电与声光, 2004, 26(1): 62-64. doi: 10.3969/j.issn.1004-2474.2004.01.019 [33] MESSING G L, ZHANG S, JAYANTHI G V. Ceramic powder synthesis by spray pyrolysis[J]. Journal of the American Ceramic Society, 2010, 76(11): 2707-2726. [34] PATIL P S. Versatility of chemical spray pyrolysis technique[J]. Materials Chemistry & Physics, 1999, 59(3): 185-198. [35] 沈耀亚, 赵德智, 许凤军. 功率超声在化工领域中的应用现状和发展趋势措施[J]. 现代化工, 2000, 20(10): 14-18. doi: 10.3321/j.issn:0253-4320.2000.10.003 [36] CAMARA C G, HOPKINS S D, SUSLICK K S. Upper bound for neutron emission from sonoluminescing bubbles in deuterated acetone[J]. Physical Review Letters, 2007, 98(6): 1-4. [37] CABANAS-POLO S, SUSLICK K S, SANCHEZ-HERENCIA A J. Effect of reaction conditions on size and morphology of ultrasonically prepared Ni(OH)2 powders[J]. Ultrasonics Sonochemistry, 2011, 18(4): 901-906. doi: 10.1016/j.ultsonch.2010.11.017 [38] 刘卉卉. 低浓度SO2磷矿浆液相催化氧化净化研究[D]. 昆明: 昆明理工大学, 2005.