-
随着我国污水处理能力和处理率的迅速增长,作为污水衍生品的污泥产量也逐年增加,预计到2020年,我国污泥年产量将达到6×107~9×107t[1]。污泥在经过浓缩、消化、脱水过程时会产生大量污泥水,其水质特点为氮磷浓度高、C/N比较低,且其中的大部分碳较难降解。目前,污泥水通过回流到污水处理厂的前端,与市政污水混合处理,增加了系统的氮磷负荷,容易导致出水氮磷不达标排放[2-4]。因此,将污泥水进行单独处理,可保障主工艺流程的稳定性和达标率,对污水处理厂的运行管理具有重要意义。
然而,污泥水单独处理工艺在目前的污水处理厂中应用较少,主要因为采用单独处理工艺在保证处理效率的前提下,其运行操作较为复杂或其能耗较高[5]。污泥水中的磷一般可通过沉淀或结晶去除,研究相对成熟[6],而污泥水中氮的低耗高效脱除一直是单独处理工艺研究开发的重点。污泥水中的氮主要为氨氮,从节能角度考虑,短程硝化-厌氧氨氧化(PN/A)工艺在污泥水处理中的研究应用较多。目前,大多研究通过分段式实现PN/A工艺对高氨氮废水的处理,即在2个独立的反应器中先经过短程硝化、后经厌氧氨氧化过程去除废水中的氮,但分段式存在操作复杂且短程硝化系统不易于长期稳定控制等问题[7-8]。因此,一体式PN/A对高氨氮废水的处理工艺受到了广泛的关注,相较于分段式,其具有工艺流程简单、占地面积小的优点[9-10]。然而,近年来采用一体式PN/A处理污泥水的研究中大多采用模拟废水[11-12],其对一体式短程硝化-厌氧氨氧化处理实际污泥水的工程应用借鉴性不高。
鉴于此,本研究以实际污泥水为对象,采用移动床生物膜反应器(moving bed biofilm reactor,MBBR)一体式耦合短程硝化与厌氧氨氧化来实现污泥水的生物脱氮,探究了生物脱氮效果并通过微生物鉴定了解其脱氮机制,为实际污泥水中氮的去除提供参考。
MBBR一体式耦合短程硝化-厌氧氨氧化处理污泥水
Reject water treatment by MBBR coupled with integrated partial nitrification-anaerobic ammonium oxidation
-
摘要: 采用移动床生物膜反应器(MBBR)处理已回收磷后的实际污泥水,在进水平均氨氮浓度为167.51 mg·L−1、HRT为22.24 h、DO为0.5 mg·L−1和温度为24~26 ℃的条件下实现了一体式短程硝化-厌氧氨氧化过程的耦合,对氨氮和总无机氮的最大去除率可达96%和79.7%。但是,一体式反应器受DO浓度影响较大,维持稳定的DO浓度对于系统的氮去除非常重要。荧光原位杂交(FISH)及高通量测序结果表明,MBBR的生物膜及活性污泥中Nitrosomonas菌分别占总菌数的10.46%和21.46%,厌氧氨氧化菌的优势菌种Candidatus Kuenenia在生物膜和活性污泥中分别占总菌数的4.13%和0.71%。因此,MBBR中活性污泥主要完成亚硝化,生物膜主要完成厌氧氨氧化,常温条件下,两者在一个反应体系中共同完成了对污泥水中氮的高效自养脱除。以上结果表明了一体式反应器处理实际污泥水的可行性,可为该工艺在实际工程中的应用提供参考。Abstract: A moving bed biofilm reactor (MBBR) was used to treat the reject water in which phosphorus was recovered in this study. The integrated partial nitrification-anaerobic ammonium oxidation (PNAAO) process was successfully coupled with MBBR under the room temperature of 24~26 ℃, HRT of 22.24 h, DO of 0.5 mg·L−1, and the average influent ammonia nitrogen (
$ {\rm{NH}}_{\rm{4}}^ + $ -N) concentration of 167.51 mg·L−1. The maximum removal rates of$ {\rm{NH}}_{\rm{4}}^ + $ -N and total inorganic nitrogen could reach 96% and 79.7%, respectively. However, DO concentration had a great effect on the operation of the integratd reactor. So, it is very important to maintain a stable DO concentration for nitrogen removal by the system. The results of fluorescence in situ hybridization (FISH) and high-throughput sequencing confirmed that Nitrosomonas in biofilm and activated sludge of MBBR accounted for 10.46% and 21.46% of the total bacteria, respectively. In addition, Candidatus Kuenenia was the dominant species of AAOB(anammox bacterium) in both biofilm and activated sludge, which accounted for 4.13% and 0.71% of the total bacteria, respectively. Therefore, partial nitrification was mainly accomplished by activated sludge, while anaerobic ammonia oxidation was primarily accomplished by biofilm in MBBR. Therefore, the coupled process of partial nitrification and anaerobic ammonia oxidation in a MBBR could achieve an efficient autotrophic nitrogen removal under room temperature. This research shows the feasibility of the treatment of real reject water by the coupled reactor, and provides an important basis on the application of the process in practical engineering. -
表 1 MBBR内活性污泥和生物膜的AUR、NUR及SAA
Table 1. AUR、NUR and SAA of biofilm and activated sludge in MBBR
运行时间/d 活性污泥/mg·(g·h)−1 生物膜/mg·(g·h)−1 AUR NUR SAA AUR NUR SAA 2 12.82 1.55 — 6.43 10.24 — 67 37.00 3.34 — 4.61 1.30 — 101 — — 5.50 — — 22.96 -
[1] 邱敬贤, 刘君, 黄安涛. 市政污泥资源化利用研究[J]. 中国环保产业, 2019, 41(1): 56-61. doi: 10.3969/j.issn.1006-5377.2019.01.012 [2] PODSTAWCZYK D, WITEK-KROWIAK A, DAWIEC-LIŚNIEWSKA A, et al. Removal of ammonium and orthophosphates from reject water generated during dewatering of digested sewage sludge in municipal wastewater treatment plant using adsorption and membrane contactor system[J]. Journal of Cleaner Production, 2017, 161: 277-287. doi: 10.1016/j.jclepro.2017.05.105 [3] 周家中, 吴迪, 韩文杰, 等. 基于MBBR的CANON工艺处理消化液中试启动[J]. 中国环境科学, 2019, 39(6): 2378-2386. doi: 10.3969/j.issn.1000-6923.2019.06.018 [4] HU D L, ZHOU Z, NIU T H, et al. Co-treatment of reject water from sludge dewatering and supernatant from sludge lime stabilization process for nutrient removal: A cost-effective approach[J]. Separation and Purification Technology, 2017, 172: 357-365. [5] 裘湛, 周振, 胡大龙. 污水处理厂污泥水处理技术研究进展[J]. 给水排水, 2018, 54(5): 127-131. doi: 10.3969/j.issn.1002-8471.2018.05.030 [6] 周振, 胡大龙, 乔卫敏, 等. 聚合氯化铝去除污泥水中磷的工艺优化[J]. 环境科学, 2014, 35(6): 2249-2255. [7] DOSTA J, VILA J, SANCHO I, et al. Two-step partial nitritation/Anammox process in granulation reactors: Start-up operation and microbial characterization[J]. Journal of Environmental Management, 2015, 164: 196-205. [8] SUN H W, BAI Y, PENG Y Z, et al. Achieving nitrogen removal via nitrite pathway from urban landfill leachate using the synergetic inhibition of free ammonia and free nitrous acid on nitrifying bacteria activity[J]. Water Science & Technology, 2013, 68(9): 2035-2041. [9] LIU T, MA B, CHEN X M, et al. Evaluation of mainstream nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) process in a granule-based reactor[J]. Chemical Engineering Journal, 2017, 327: 973-981. doi: 10.1016/j.cej.2017.06.173 [10] JIN P F, LI B K, MU D Y, et al. High-efficient nitrogen removal from municipal wastewater via two-stage nitritation/anammox process: Long-term stability assessment and mechanism analysis[J]. Bioresource Technology, 2019, 271: 150-158. doi: 10.1016/j.biortech.2018.09.097 [11] 胡石, 甘一萍, 张树军, 等. 一体化全程自养脱氮(CANON)工艺的效能及污泥特性[J]. 中国环境科学, 2014, 34(1): 111-117. [12] 李冬, 何永平, 张肖静, 等. MBR系统CANON工艺的快速启动及微生物种群特征[J]. 中国环境科学, 2014, 34(11): 2788-2795. [13] LI X L, ZHANG J, ZHANG X Y, et al. Start-up and nitrogen removal performance of CANON and SNAD processes in a pilot-scale oxidation ditch reactor[J]. Process Biochemistry, 2019, 84: 134-142. doi: 10.1016/j.procbio.2019.06.010 [14] KOWALSKI M S, DEVLIN T, DI BIASE A, et al. Accelerated start-up of a partial nitritation-anammox moving bed biofilm reactor[J]. Biochemical Engineering Journal, 2019, 145: 83-89. doi: 10.1016/j.bej.2019.02.015 [15] QIAO S, TIAN T, DUAN X M, et al. Novel single-stage autotrophic nitrogen removal via co-immobilizing partial nitrifying and anammox biomass[J]. Chemical Engineering Journal, 2013, 230: 19-26. doi: 10.1016/j.cej.2013.06.048 [16] CHAO Y Q, MAO Y P, YU K, et al. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach[J]. Applied Microbiology and Biotechnology, 2016, 100(18): 8225-8237. doi: 10.1007/s00253-016-7655-9 [17] ZHOU X H, ZHANG M K, YU T, et al. Oxygen profiles in biofilms undergoing endogenous respiration[J]. Chemical Engineering Journal, 2013, 220: 452-458. doi: 10.1016/j.cej.2013.01.004 [18] GILBERT E M, AGRAWAL S, SCHWARTZ T, et al. Comparing different reactor configurations for partial nitritation/Anammox at low temperatures[J]. Water Research, 2015, 81: 92-100. doi: 10.1016/j.watres.2015.05.022