-
药物及个人护理品(pharmaceutical and personal care products,PPCPs)是一类新型的环境污染物,主要包括各种处方药、非处方药、化妆品及洗化用品等[1-2]。近年来,已经有上百种PPCPs在地下水、地表水、沉积物等水环境中被检出[3-9]。虽然PPCPs在环境中浓度水平较低,半衰期短,但由于人们使用量的快速增长,导致其在环境介质中呈现“伪持续存在”的状态,不仅威胁生态系统的安全,也可以通过食物链传递给人类健康带来潜在风险和危害[10-13]。
双壳类水产品由于特殊的栖息环境且具有非选择性滤食的习性,能在体内软组织内积累、富集环境中的污染物质,是一种较为理想的环境指示生物[14-15]。因此,建立一种双壳类水产品中高效、准确、灵敏的PPCPs分析检测方法,不仅对保障居民身体健康具有重要意义,同时也可反映监测区域PPCPs水生态风险。
PPCPs种类繁多、结构复杂,物化性质差异大,前处理主要采用固相萃取法,虽然结果重现性好,但需要进行活化、淋洗、洗脱等处理,步骤繁琐,耗时,费用高[16-21]。QuEChERS由于具有快速、简单、便宜、有效、耐用和安全可靠等优势,近年广泛应用到多种基质中农药、兽药残留检测中,但目前尚未有应用于双壳类水产品中PPCPs测定的文献报道。
本实验通过优化QuEChERS样品处理技术,结合超高效液相色谱-串联质谱法实现了双壳类水产品中40种药物及个人护理品残留的测定。
QuEChERS-超高效液相色谱-串联质谱法同时测定双壳类水产品中40种药物及个人护理品的残留量
Simultaneous determination of 40 pharmaceuticals and personal care products in bivalve aquatic product by QuEChERS and ultra performance liquid chromatography-tandem mass spectrometry
-
摘要: 建立了以QuEChERS作为前处理技术,结合高效液相色谱-串联质谱技术(HPLC-MS/MS)检测双壳类水产品中40种药物及个人护理品的检测方法。样品经乙腈提取,PSA和C18净化,采用ACQUITY UPLC HSS T3色谱柱(2.1 mm×100 mm,1.8 μm)分离,以甲醇和0.1%甲酸水溶液作为流动相进行梯度洗脱,经电喷雾正离子电离及多反应监测模式来测定目标化合物, 采用基质匹配标准溶液曲线法进行定量。结果表明,40种药物及个人护理品在0.5—100 μg·L−1浓度范围内线性关系良好,相关系数均大于0.99,检出限为0.04—6 μg·kg−1,定量限为0.1 —19 μg·kg−1。对空白样品进行3个水平的加标回收实验,平均回收率在76.9%—110%范围内,相对标准偏差为1.2%—9.5%。该方法前处理方法快速、简便、灵敏度高,适用于双壳类水产品中多种药物及个人护理品残留的同时测定。
-
关键词:
- QuEChERS /
- 超高效液相色谱-串联质谱法 /
- 药物及个人护理品 /
- 双壳类水产品
Abstract: An analytical method for determining 40 Pharmaceutical and Personal Care Products in bivalve aquatic product was developed by QuEChERS coupled with HPLC-MS/MS. The samples were extracted with acetonitrile, and then subjected to QuEChERS purification. The residual targets were analyzed on an ACQUITY UPLC HSS T3 column (2.1 mm×100 mm, 1.8 μm) with gradient elution using methanol-0.1% (V/V) formic acid aqueous solution as the mobile phase. All the analytes were effectively separated and cleaned up within 8 min, and were finally detected by UPLC-MS/MS with ESI+ ionization in multiple reaction monitoring (MRM) mode. The results demonstrated that the linear range of this method was from 0.5 μg·L−1 to 100 μg·L−1 with good correlation coefficients of R >0.99. The limits of detection and quantification were 0.04—6 μg·kg−1 and 0.1—19 μg·kg−1, respectively. The average recoveries of the forty Pharmaceutical and Personal Care Products spiked in blank sample at three spiked levels were 76.9%—110% with the relative standard deviations (RSDs) of 1.2%—9.5%. The proposed method is simple, sensitive and accurate. It is applicable for the determination of Pharmaceutical and Personal Care Products in bivalve aquatic product. -
表 1 40种PPCPs的质谱参数
Table 1. Mass spectrometrie parameters of the 40 PPCPs
分析物
Analytes离子对mz
Mass transitionsQ1 电压/V
Q1 pre bias碰撞能量/eV
Collision energyQ3 电压/V
Q3 pre bias非洛地平 384.2/247.1, 384.2/95.0* 23, 10 28,47 17, 17 尼索地平 389.0/239.0*, 389.0/195.0 14, 14 23,38 27, 21 尼群地平 361.0/329.0, 361.0/315.0* 13, 13 15,13 23, 22 硝苯地平 347.1/315.1*, 347.1/254.0 17, 16 10,16 26,27 盐酸可乐定 230.0/212.8*, 230.0/159.6 11, 11 24,33 26,27 阿替洛尔 267.2/145.0, 267.2/190.0* 10, 11 25,19 16,21 盐酸苯乙双胍 206.2/60.1*, 206.2/77.1 25, 25 17,49 22,20 吡格列酮 357.0/134.0*, 357.0/119.0 12, 12 28,47 27,12 格列美脲 324.2/110.1*, 324.2/127.1 10, 11 21,17 11,24 格列喹酮 528.2/403.1*, 528.2/386.0 20, 20 16,22 20,20 格列波脲 367.1/170.2*, 367.1/152.1 10, 13 17,22 18,27 尼莫地平 419.2/343.1*, 419.2/301.0 11, 10 12,25 24,22 氨氯地平 409.2/238.0*, 409.2/294.1 14, 14 11,14 18,21 芬氟拉明 232.1/159.0*, 232.1/109.1 10, 10 22,43 17,11 甲苯磺丁脲 271.0/155.0, 271.0/74.0* 13, 13 16,12 29,15 格列本脲 495.2/370.0*, 495.2/169.0 13, 12 17,29 26,11 格列齐特 324.2/110.1*, 324.1/127.1 10, 11 21,17 11,24 格列吡嗪 446.2/321.1*, 446.2/103.1 10, 10 13,41 23,19 瑞格列奈 453.3/230.1*, 453.3/162.1 10, 10 27,22 16,19 罗格列酮 358.2/135.1*, 358.2/119.0 12, 12 26,53 27,24 盐酸丁二胍 158.0/60.0*, 158.0/57.0 12, 12 15,23 10,24 哌唑嗪 384.2/95.0*, 384.2/247.0 10, 11 48,29 18,17 麻黄碱 166.2/148.1*, 166.2/115.1 13, 12 14,26 29,22 酚酞 319.2/225.0*, 319.2/115.1 11, 11 21,55 24,22 氯苯那敏 275.1/230.0*, 275.1/167.1 10, 10 15,40 26,18 佐匹克隆 389.1/244.9*, 389.1/217.0 13, 14 19,31 17,15 文拉法辛 278.2/260.2*, 278.2/121.1 10, 13 12,29 18,24 青藤碱 330.1/189.0*, 330.1/58.0 12, 11 32,26 19,24 罗通定 356.2/192.1*, 356.2/176.1 13, 12 27,51 21,12 盐酸二甲双胍 130.0/71.0*, 130.0/60.0 27, 10 23,14 24,16 西布曲明 280.0/139.0, 280.0/125.0* 14, 13 15,26 15,25 磺胺吡啶 250.2/156.0*, 250.2/184.0 18, 18 13,10 26,14 磺胺甲基嘧啶 265.1/156.0, 265.1/172.0* 13, 13 25,17 26,15 磺胺二甲嘧啶 279.2/156.0, 279.2/186.0* 20, 30 19,17 10,20 环丙沙星 332.2/314.1*, 332.2/231.1 23, 23 20,37 23,25 恩诺沙星 360.2/316.2, 360.2/342.2* 13, 13 19,21 15,16 氧氟沙星 362.2/318.2*, 362.2/261.1 14, 14 19,27 21,13 洛美沙星 352.2/265.1*, 352.2/308.2 27, 27 23,16 12,21 甲氧苄氨嘧啶 291.1/230.0*, 291.1/261.0 30, 30 24,25 25,28 避蚊胺 192.1/119.1*, 192.1/91.0 30, 30 16,30 22,16 *:定量离子对 Quantitative ion pair 表 2 40种PPCPs的线性方程、相关系数、检出限及定量限
Table 2. Linear equations,correlation coefficient,LOD and LOQ of the 40 PPCPs
分析物
Analytes线性方程
Linear regression equation相关系数
Correlation coefficient检出限/(μg·kg−1)
LOD定量限/(μg·kg−1)
LOQ非洛地平 y=135508 x−63843 0.997 0.1 0.3 尼索地平 y=14268 x+1275 0.999 0.3 0.9 尼群地平 y=136511 x−41244 0.999 4 12 硝苯地平 y=41627 x+361 0.999 0.2 0.6 盐酸可乐定 y=17312 x−2805 0.999 0.4 1 阿替洛尔 y=52049 x+107714 0.995 0.5 2 盐酸苯乙双胍 y=306813 x+93103 0.999 0.1 0.3 吡格列酮 y=418945 x−190340 0.998 0.08 0.2 格列美脲 y=44827 x−66256 0.994 0.06 0.2 格列喹酮 y=46164 x-905 0.998 0.1 0.3 格列波脲 y=13887 x−6219 0.993 0.2 0.6 尼莫地平 y=33151 x−18665 0.998 0.08 0.2 氨氯地平 y=12059 x−11353 0.997 0.1 0.3 芬氟拉明 y=331640 x+110967 0.999 0.2 0.6 甲苯磺丁脲 y=3221 x−15 0.998 0.5 2 格列本脲 y=7910 x−840 0.998 3 9 格列齐特 y=94838 x−223056 0.998 0.5 2 格列吡嗪 y=27661 x+35590 0.995 0.08 0.2 瑞格列奈 y=442741 x+17986 0.999 0.07 0.2 罗格列酮 y=331981 x+227259 0.998 0.2 0.6 盐酸丁二胍 y=320421 x−35953 0.999 6 19 哌唑嗪 y=242671 x−80291 0.998 0.1 0.3 麻黄碱 y=175539 x+70299 0.998 0.2 0.6 酚酞 y=30058 x+7229 0.999 0.2 0.6 氯苯那敏 y=506387 x−416795 0.999 0.2 0.6 佐匹克隆 y=87035 x−29692 0.994 0.1 0.3 文拉法辛 y=505475 x+50250 0.999 0.1 0.3 青藤碱 y=27173 x+1277 0.999 0.3 0.9 罗通定 y=571508 x+90907 0.999 0.07 0.2 盐酸二甲双胍 y=125562 x−30824 0.998 4 12 西布曲明 y=2553 x+1865 0.997 3 9 磺胺吡啶 y=38327 x+1905 0.999 0.2 0.6 磺胺甲基嘧啶 y=26269 x+2269 0.998 0.3 0.9 磺胺二甲嘧啶 y=46489 x+639 0.998 0.2 0.6 环丙沙星 y=113402 x−67712 0.998 0.1 0.3 恩诺沙星 y=191878 x+7920 0.997 0.2 0.6 氧氟沙星 y=157408 x+14305 0.999 0.04 0.1 洛美沙星 y=29474 x+3542 0.998 0.2 0.7 甲氧苄氨嘧啶 y=18375 x+5361 0.999 0.2 0.7 避蚊胺 y = 20612 x+ 18003 0.992 0.1 0.3 -
[1] 陈溪, 吴慈, 王龙祥, 等. 基于超高效液相色谱-高分辨质谱技术的水中112种药品和个人护理用品的高通量筛查和定量方法 [J]. 环境化学, 2018, 36(11): 1147-1157. CHEN X, WU C, WANG L X, et al. High-throughput screening and quantitative analysis method of 112 pharmaceutical and personal care products in water based on ultra-high performance liquid chromatography with high-resolution mass spectrometry [J]. Environmental Chemistry, 2018, 36(11): 1147-1157(in Chinese).
[2] 王丹丹, 张婧, 杨桂朋, 等. 药物及个人护理品的污染现状、分析技术及生态毒性研究进展 [J]. 环境科学研究, 2018, 31(12): 2013-2020. WANG D D, ZHANG Q, YANG P J, et al. Pollution status, analytical techniques and ecotoxicity of pharmaceuticals and personal care products [J]. Research of Environmental Sciences, 2018, 31(12): 2013-2020(in Chinese).
[3] XU M J, HUANG H T, LI N, et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China [J]. Ecotoxicology and Environmental Safety, 2019, 175(2): 289-298. [4] LEE H J, KIM J Y, HAMM S Y, et al. Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners, and pesticides in groundwater from an agricultural area in Korea [J]. Science of The Total Environment, 2019, 659(6): 168-176. [5] 张芹, 张圣虎, 汪贞, 等. 骆马湖表层水体中32种PPCPs类物质的污染水平、分布特征及风险评估 [J]. 环境科学, 2017, 38(1): 169-173. ZHANG Q, ZHANG S H, WANG Z, et al. Pollution level, distribution characteristics and risk assessment of 32 PPCPs in surface water of luomahu lake [J]. Journal of Ecology, 2017, 38(1): 169-173(in Chinese).
[6] 余绵梓, 袁啸, 李适宇, 等. 典型PPCPs在河流沉积物中的吸附特性 [J]. 环境科学, 2019, 39(4): 1724-1733. YU M Z, YUAN X, LI S Y, et al. Experimental and modeling study of sorption characteristics of selected PPCPs onto river sediments [J]. Journal of Ecology, 2019, 39(4): 1724-1733(in Chinese).
[7] 高月, 李杰, 许楠, 等. 汉江水相和沉积物中药品和个人护理品(PPCPs)的污染水平与生态风险 [J]. 环境化学, 2018, 37(8): 1706-1719. doi: 10.7524/j.issn.0254-6108.2018022604 GAO Y, LI J, XU N, et al. Pollution levels and ecological risks of PPCPs in water and sediment samples of Hanjiang River [J]. Environmental Chemistry, 2018, 37(8): 1706-1719(in Chinese). doi: 10.7524/j.issn.0254-6108.2018022604
[8] 潘潇, 强志民, 王为东, 等. 巢湖东半湖饮用水源区沉积物药品和个人护理品(PPCPs)分布与生态风险 [J]. 环境化学, 2016, 35(11): 2234-2244. doi: 10.7524/j.issn.0254-6108.2016.11.2016040502 PAN X, QIANG ZM, WANG WM, et al. Distribution and ecological risk of sedimentary PPCPs in the eastern drinking water source area of Chaohu Lake [J]. Environmental Chemistry, 2016, 35(11): 2234-2244(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016040502
[9] SALGADO L D, MARQUES A E M L, KRAMER R D, et al. Integrated assessment of sediment contaminant levels and biological responses in sentinel fish species Atherinella brasiliensis from a sub-tropical estuary in south Atlantic [J]. Chemosphere, 2019, 219(2): 15-27. [10] YAN Q, GAO X, HUANG L, et al. Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: Mass balance analysis and consumption back-calculated model [J]. Chemosphere, 2014, 99(3): 160-170. [11] SANTIAGO E, DANIELE M B, LUIZ G T, et a1. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals(EDCs)and pharmaceuticals and personal care products(PPCPs)in water efluents [J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. doi: 10.1016/j.jhazmat.2007.07.073 [12] SANG D K JAEWCON C, IN S K. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking and waste waters [J]. Water Research, 2007, 41(5): 1013-1021. doi: 10.1016/j.watres.2006.06.034 [13] MARIA K DIONISSIOS M T, DESOP K. Removal of residual pharmaceticals from aqueous systems by advanved oxidation processes [J]. Environmem International, 2009, 35(2): 402-417. doi: 10.1016/j.envint.2008.07.009 [14] 李厦, 刘宪斌, 田胜艳, 等. 唐山和秦皇岛近岸海域贝类体内PAHs含量与健康风险 [J]. 海洋通报, 2014(2): 169-173. doi: 10.11840/j.issn.1001-6392.2014.02.008 LI X, LIU X B, TIAN S Y, et al. Contents and health risk of polycyclic aromatic hydrocarbons in the shellfish from the offshore area of Tangshan and Qinhuangdao [J]. Marine Science Bulletin, 2014(2): 169-173(in Chinese). doi: 10.11840/j.issn.1001-6392.2014.02.008
[15] 杜静, 于明曦, 宋广军, 等. 基于双壳贝类指示的海洋微塑料污染监测与毒理学研究进展 [J]. 生态学杂志, 2018, 37(3): 169-173. DU J, YU M X, SONG G J, et al. Research advances on monitoring and toxicology of microplastic pollution in marine as indicated by bivalves [J]. Journal of Ecology, 2018, 37(3): 169-173(in Chinese).
[16] TAN Z S S, HO Y B, ZAKARIA M P, et al. Simultaneous extraction and determination of pharmaceuticals and personal care products (PPCPs) in river water and sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry [J]. International Journal of Environmental Analytical Chemistry, 2015, 95(9): 816-832. [17] 张盼伟, 赵高峰, 周怀东, 等. 超声波萃取-高效液相色谱-串联质谱同时测沉积物中10种PPCPs化合物 [J]. 中国环境监测, 2014, 30(1): 138-143. doi: 10.3969/j.issn.1002-6002.2014.01.028 ZHANG P W, ZHAO G F, ZHOU H D, et al. Simultaneous determination of 10 PPCPs in sediments using ultrasound extraction and HPLC-MS/MS [J]. Environmental Monitoring in China, 2014, 30(1): 138-143(in Chinese). doi: 10.3969/j.issn.1002-6002.2014.01.028
[18] 吴春英, 谷风, 白鹭, 等. 超高效液相色谱-三重四极杆质谱联用同时检测环境水体中22种典型药品及个人护理用品 [J]. 色谱, 2015, 33(8): 843-848. WU C Y, GU F, BAI L, et al. Simultaneous determination of 22 typical pharmaceuticals and personal care products in environmental water using ultra performance liquid chromatography-triple quadrupole mass spectrometry [J]. Journal of Chromatography, 2015, 33(8): 843-848(in Chinese).
[19] 吕敏, 孙倩, 李妍, 等. 固相萃取-高效液相色谱-串联质谱测定九龙江流域水中药品和个人护理用品 [J]. 厦门大学学报(自然科学版), 2012, 51(6): 1047-1053. LV M, SUN Q, LI Y, et al. Determination of pharmaceuticals and personal care products in Jiulong River by solid phase extraction and high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Xiamen University(Natural Science), 2012, 51(6): 1047-1053(in Chinese).
[20] 冉韵竹, 齐维晓, 李静, 等. 超高效液相色谱-串联质谱法同时测定水中13种药品与个人护理品 [J]. 环境化学, 2018, 37(2): 255-263. RAN Y Z, QI W X, LI J, et al. Simultaneous determination of 13 pharmaceuticals and personal care products in water using UPLC-MS/MS [J]. Environmental Chemistry, 2018, 37(2): 255-263(in Chinese).
[21] 朱赛嫦, 王静, 邵卫伟, 等. 超高效液相色谱-串联质谱法同时检测地表水中18种药物与个人护理品的残留量 [J]. 色谱, 2013, 31(3): 356-368. ZHU S C, WANG J, SHAO W W, et al. Simultaneous determination of 18 pharmaceuticals and personal care products in surface water by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography, 2013, 31(3): 356-368(in Chinese).
[22] 张晓娇, 柏杨巍, 张远, 等. 辽河流域地表水中典型抗生素污染特征及生态风险评估 [J]. 环境科学, 2017, 38(11): 4554-4561. ZHANG X J, BO Y W J, ZHANG W, et al. Occurrence, distribution, and ecological risk of antibiotics in surface water in the liaohe river basin, China [J]. Environmental Science, 2017, 38(11): 4554-4561(in Chinese).
[23] 徐亚茹, 李杰, 王之芬, 等. 超高效基于萃取和超高效液相色谱-串联质谱法的贝类抗生素快速测定方法 [J]. 北京大学学报(自然科学版), 2018, 54(5): 1061-1066. ZHU S C, WANG J, SHAO W W, et al. Fast determination of multiple antibiotics in mussels based on extraction and UPLC-MS/MS [J]. C Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(5): 1061-1066(in Chinese).