-
随着纺织和造纸工艺等规模的逐渐扩大,芳香族化合物染料废水的排放已经成为水污染的主要问题之一。当前的污水处理方法[1-2](吸附、混凝、沉淀等)存在去除成本高,操作复杂,难以同时除去多种污染物且易产生二次有毒产物等缺点,因此迫切需要找到一种更有效的污水净化工艺。具有高效降解能力的光催化技术是近年来的研究热点之一[3-5],光催化技术是利用光催化剂(纳米氧化锌等)将有机污染物降解成无毒的CO2和H2O等小分子物质[6-8]。但是由于纳米氧化锌(ZnO)等光催化剂回收难度大,易造成二次污染等缺陷,限制了其大范围的应用。因此如何制备一种柔性载体负载光催化剂在高效催化的同时克服其二次污染的问题是当前的研究热点之一,采用静电纺丝制备的ZnO复合纳米纤维膜具有易于回收、表面积大、吸附容量大等优点,扩大了ZnO在光催化领域的范围应用。
聚甲基丙烯酸甲酯(PMMA)是一种多功能玻璃态生物相容性良好的聚合物,对可见光具有优异的透过性、良好的加工能力,通过静电纺丝制备的PMMA纳米纤维膜耐磨性、力学性能和亲水性能较差,很难单独应用于污水处理等领域[9-10]。聚氨酯(PU)与染料的亲和性好、挠曲性好等优点,常被用于增强静电纺丝中纳米纤维膜的拉伸强度、弹性等力学性能[11-12]。
等离子体处理是通过电场的加速,使获得能量的分子被激发或者发生电离形成活性基团,同时空气中的水分和氧气在高能电子的作用下也可产生大量的新生态氢、羟基等活性基团,以此改变高分子材料的结构,达到对材料表面进行亲水性改性或纤维表面清洁的方法[13-16]。
本文通过静电纺丝制备了纤维形态良好,易于回收的PMMA/PU/ZnO复合纳米纤维膜,并通过等离子技术增强其亲水性能。对制备的复合纳米纤维膜进行拉伸强度、静态接触角、吸附性能和光催化性能等测试,并探究其对亚甲基蓝、罗丹明B和活性红染料废水的降解能力及重复使用性能。
聚甲基丙烯酸甲酯、聚氨酯和氧化锌复合纳米纤维膜的制备及其光催化性能
Preparation and application of the PMMA/PU/ZnO composite nanofibers
-
摘要: 利用静电纺丝制备具有良好纤维形态及优异力学性能的聚甲基丙烯酸甲酯、聚氨酯和氧化锌(PMMA/PU/ZnO)复合纳米纤维膜,采用等离子技术对复合纳米纤维膜进行亲水性修饰,并探究其对染料废水的光催化降解性能。本文对PMMA/PU/ZnO复合纳米纤维膜的微观形态结构进行详细表征,并对其亲水性能、力学性能及重复使用性能予以测试。结果表明,在300 W汞灯照射条件下,经等离子处理的PMMA/PU/ZnO复合纳米纤维膜对亚甲基蓝、罗丹明B和活性红的降解率分别为85%、59%和52%,经3次重复使用后仍具有良好的降解性能。Abstract: The polymethyl methacrylate, polyurethane and zinc oxide (PMMA/PU/ZnO) blend nanofibrous membrane with ideal fiber morphology and excellent mechanical property was prepared by electrospinning technique. Then, the hydrophilicity of blend nanofibrous membrane was improved by the plasma technology, furthermore, the photocatalytic performance of the nanofibrous membrane was analyzed. In addition, the surface microstructure of PMMA/PU/ZnO blend nanofibrous membrane was characterized in detail, and its hydrophilic property, mechanical property and reusability were measured in this article. The results showed that the surface modified PMMA/PU/ZnO blend nanofiberous membrane has a degradation rate of 85%, 59% and 52% for methylene blue, rhodamine B and reactive red under illumination by 300 W Hg lamp, and the nanofibrous membrane could still maintain fine degradability after 3 times of reuse.
-
Key words:
- polymethyl methacrylate /
- plasma treatment /
- nano-sized ZnO /
- photocatalysis
-
表 1 PMMA/PU等离子处理前后复合纳米纤维膜力学性能测试数据
Table 1. Mechanical property test of the composite nanofiber membranesbefore and after treatment
样品
Sample断裂强度/(cN·mm−2)
Breakingstrength伸长率/%
ElongationPMMA/PU复合纳米纤维膜 36.115 81.42 PMMA/PU等离子处理后复合纳米纤维膜 34.655 61.85 PMMA纳米纤维膜 46.26 17.83 -
[1] 万琼, 雷茹, 王信, 等. 海绵铁填料对城市内河污染物质去除 [J]. 环境化学, 2019, 38(9): 2128-2140. WANG Q, LEI R, WANG X, et al. Removal of pollutants from urban inland rivers by sponge iron packing [J]. Environmental Chemistry, 2019, 38(9): 2128-2140(in Chinese).
[2] 石健, 万杨, 黄鑫, 等. 聚合铁钛混凝剂对印染废水的处理 [J]. 环境工程学报, 2019, 13(5): 1021-1029. doi: 10.12030/j.cjee.201901137 SHI J, WAN Y, HUANG X, et al. Treatment of printing and dyeing wastewater with polymeric iron-titanium coagulant [J]. Journal of Environmental Engineering, 2019, 13(5): 1021-1029(in Chinese). doi: 10.12030/j.cjee.201901137
[3] 龚真萍. 有机改性硅藻土对活性染料染色废水的处理效果 [J]. 毛纺科技, 2014, 42(2): 32-35. doi: 10.3969/j.issn.1003-1456.2014.02.009 GONG Z P. The treatment effect of organic modified kieselguhr on the dyeing wastewater of reactive dye [J]. Wool Spinning Technology, 2014, 42(2): 32-35(in Chinese). doi: 10.3969/j.issn.1003-1456.2014.02.009
[4] FANG H G, PANYS, YINMY, et al. Enhanced photocatalytic activity and mechanism of Ti3C2-OH/Bi2WO6 :Yb3+,Tm3+ towards degradation of RhB under visible and near infrared light irradiation [J]. Materials Research Bulletin, 2020, 121: 110618. doi: 10.1016/j.materresbull.2019.110618 [5] TIAN C, ZHAO H, SUN HL, et al. Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism [J]. Chemical Engineering Journal, 2020, 381: 122760. doi: 10.1016/j.cej.2019.122760 [6] 孙凯, 谢道月, 陈文君, 等. 纳米金属氧化物模拟天然酶催化水体中酚类污染物转化的研究进展 [J]. 环境化学, 2019, 38(4): 911-921. doi: 10.7524/j.issn.0254-6108.2018061501 SUN K, XIE D M, CHEN W J, et al. Progress in the research on the conversion of phenolic contaminants from natural enzyme-catalyzed water by nano-metal oxides [J]. Environmental Chemistry, 2019, 38(4): 911-921(in Chinese). doi: 10.7524/j.issn.0254-6108.2018061501
[7] 王丽娟, 李晓宁, 陈爱武, 等. 纳米ZnO的制备及其光催化降解印染废水 [J]. 深圳大学学报(理工版), 2019, 36(4): 367-374. WANG L J, LI X N, CHEN A W, et al. Preparation of nanometer ZnO and its photocatalytic degradation of printing and dyeing wastewater [J]. Journal of Shenzhen University (Science and Engineering Edition), 2019, 36(4): 367-374(in Chinese).
[8] 周媛, 多喜, 李成博, 等. 纳米氧化锌的制备及其光催化降解甲基橙的研究 [J]. 内蒙古农业大学学报(自然科学版), 2018, 39(4): 86-94. ZHOU Y, DUO X, LI C B, et al. Preparation of nano-zinc oxide and its photocatalytic degradation of methyl orange [J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2018, 39(4): 86-94(in Chinese).
[9] 方梦珍, 高涵超, 覃小红, 等. 静电纺PMMA/LiCl复合纳米纤维膜对盐性和油性气溶胶颗粒物的过滤性能 [J]. 东华大学学报(自然科学版), 2019, 45(3): 345-352, 357. FANG M Z, GAO H C, TAN X H, et al. The filtration performance of the electrostatic spinning PMMA/LiCl composite nanofiber membrane to the aerosol and oily aerosol particles [J]. Journal of DongHua University (Natural Science Edition), 2019, 45(3): 345-352, 357(in Chinese).
[10] 李鑫, 凤权, 武丁胜, 等. PMMA基抗静电纳米纤维的制备及其性能研究 [J]. 化工新型材料, 2016, 44(7): 231-233, 236. LI X, FENG Q, WU D S, et al. Preparation and properties of PMMA based antistatic nanofibers [J]. New Chemical Materials, 2016, 44(7): 231-233, 236(in Chinese).
[11] 王玉浩, 马万彬, 周彦粉, 等. 静电纺聚氨酯纳米纤维膜的制备及其性能研究 [J]. 塑料工业, 2019, 47(8): 151-155. doi: 10.3969/j.issn.1005-5770.2019.08.033 WANG Y H, MA W B, ZHOU Y F, et al. Preparation and properties of electrospun polyurethane nanofiber membrane [J]. The Plastic Industry, 2019, 47(8): 151-155(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.08.033
[12] 李亚静, 唐文英, 王泽颖, 等. 羟基磷灰石/聚氨酯复合纳米纤维制备及其对重金属Cd2+的吸附应用研究 [J]. 塑料工业, 2018, 46(11): 137-140, 158. doi: 10.3969/j.issn.1005-5770.2018.11.031 LI Y J, TANG W Y, WANG Z Y, et al. Preparation of hydroxyapatite/polyurethane composite nanofiber and its adsorption to heavy metal Cd2+ [J]. Plastic Industry, 2018, 46(11): 137-140, 158(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.11.031
[13] LI D, XIONG M, WANG S, et al. Effects of low-temperature plasma treatment on wettability of glass surface: molecular dynamic simulation and experimental study [J]. Applied Surface Science, 2020, 503: 144257. doi: 10.1016/j.apsusc.2019.144257 [14] 贺建强. UHMWPE纤维表面改性及其复合材料界面初步探究[D]. 上海: 东华大学, 2014. HE J Q, Preliminary study on surface modification of UHMWPE fiber and interface of its composites[D]. Shanghai: Donghua University, 2014(in Chinese).
[15] 余璠, 徐晓霞, 张佩华, 等. 低温等离子体处理对PGLA编织线性能的影响 [J]. 东华大学学报(自然科学版), 2019, 45(4): 513-518. YU P, XU X X, ZHANG P H, et al. Effect of low temperature plasma treatment on the properties of PGLA braided wires [J]. Journal of Donghua University (Natural Science Edition), 2019, 45(4): 513-518(in Chinese).
[16] SANGNAL MATT DURANDHARA MURTHY V, VAIDYA U. Improving the adhesion of glass/polypropylene (glass-PP) and high-density polyethylene (HDPE) surfaces by open air plasma treatment [J]. International Journal of Adhesion and Adhesives, 2019, 95: 102435. doi: 10.1016/j.ijadhadh.2019.102435 [17] 申晓. 涤纶纤维表面改性处理及其复合材料性能研究[D]. 杭州: 浙江理工大学, 2018. SHEN X. Study on surface modification of polyester fiber and properties of its composites[D]. Hangzhou: Zhejiang University of Science And Technology, 2018(in Chinese).
[18] 汪毅. PE/PP非织造布等离子体改性及其亲水抗静电性能的研究[D]. 上海: 东华大学, 2009. WANG Y. Plasma modification of PE/PP nonwoven fabric and its hydrophilic antistatic properties[D]. Shanghai: Donghua University, 2009(in Chinese).