-
自2019年底,由新冠病毒(SARS-CoV-2)引起的新型冠状病毒肺炎(COVID-19)在世界范围内广泛传播,不但对世界各国经济产生严重影响,更造成了全球数百万人死亡。根据世界卫生组织的统计,截至2021年1月27日11时,全球累计确诊病例已超过1亿例,死亡人数超过210万人,单日新增确诊病例达到50万例[1]。正如许多专家所预测,2020年冬季在北半球出现了新一轮的COVID-19疫情高发期,这为各国疫情防控带来了极大的压力。加强病毒传播机制的研究和理解,完善疫情防控措施,及时有效阻断SARS-CoV-2的传播、减少人群感染几率被认为是当前各国面临的重要任务。
SARS-CoV-2是冠状病毒的一种,其传播途径一般包括飞沫传播,密切接触传播和在密闭空间中的气溶胶传播[2]。基于2002年冬季暴发的非典型肺炎的防控经验和研究结果,人们普遍认为高温对于病毒的消失起到了关键作用,许多研究也证实了环境因素(温度、湿度、大气颗粒物等)对病毒传播产生的重要影响[3]。然而,对于已在全球持续传播一年时间的SARS-CoV-2,人们仍然无法清楚地掌握其致病能力、传播途径和环境影响,导致即使在采取比较严密的防控措施后,仍然出现局部疫情暴发的现象,为疫情控制和预防措施实施带来不利影响。本文在检索现有文献资料的基础上,综述了SARS-CoV-2的研究进展,尤其针对影响SARS-CoV-2传播的环境因素进行了总结归纳,并对COVID-19产生的影响进行了梳理,以期为深入理解SARS-CoV-2的传播机制以及COVID-19疫情防控研究提供参考。
新型冠状病毒(SARS-CoV-2)的环境传播研究进展
A review on the environmental transmission of novel coronavirus (SARS-CoV-2)
-
摘要:
自2019年12月暴发新型冠状病毒肺炎(COVID-19)以来,疫情已在全球200多个国家造成数百万人死亡,对世界经济产生了极大冲击。针对引起此次疫情的新型冠状病毒(SARS-CoV-2),世界各国积极开展了科学研究和预防控制措施,取得了许多重要的进展,为疫情防控做出了重要贡献。然而,作为疫情防控成效最显著的国家,在2020年6月份以后,我国多地出现了由“物传人”进而引发“人传人”的小范围疫情,表明SARS-CoV-2传播的复杂性;此外,国外疫情形势严峻,多国出现SARS-CoV-2变异毒株感染病例,使得疫情防控难度进一步加大。本文针对SARS-CoV-2的最新研究进行简要综述,包括病毒来源与感染机制,诊断和治疗方法,传播特征及环境影响等,重点对SARS-CoV-2传播的环境影响因素进行了梳理,以期提升对SARS-CoV-2环境传播的认识。
-
关键词:
- SARS-CoV-2 /
- 感染机制 /
- 诊断与治疗 /
- 环境传播 /
- 影响因素
Abstract:Since the outbreak of the new coronavirus pneumonia (COVID-19) in December 2019, it has caused millions of deaths in more than 200 countries all over the world, and the global economic development has been severely impacted. Concerning the new type of coronavirus (SARS-CoV-2) that caused the epidemic, scientific research has been actively carried out around the world as well as various prevention and control measures, which made important contribution to protect human health. However, as one of the countries that made outstanding achievements in the prevention and control of the epidemic, there were some regional epidemics of “object-to-human transmission” and then “human-to-human transmission” occurred after June 2020, indicating the complexity of the spread of SARS-CoV-2. In addition, the development of COVID-19 in some contraries is going uncontrollable recently, and infection cases of the SARS-CoV-2 variant strain have appeared in many countries, which made the prevention and control of the epidemic more difficult. This article briefly reviewed the updated research works on SARS-CoV-2, including possible sources of virus and infection mechanisms, diagnosis and treatment approaches, transmission characteristics and environmental impact, etc. In particular, the environmental factors affecting the transmission of SARS-CoV-2 are summarized in order to enhance the understanding of environmental transmission of SARS-CoV-2.
-
表 1 SARS-CoV、MERS-CoV和SARS-CoV-2的基本信息
Table 1. The basic information of Basic information of SARS-CoV, MERS-CoV and SARS-CoV-2
冠状病毒
Coronavirus暴发时间
Outbreak
time暴发地点
Outbreak
location死亡率
Mortality识别受体
Recognition receptor病毒-受体互作机制
Virus-Receptor Mechanism of action参考文献
ReferencesSARS-CoV(严重急性呼吸综合征冠状病毒) 2002.11 中国广东 10% 血管紧张转化
酶2(ACE2)其S蛋白的受体结合域中的突变(N497L和T487S)可以显著增加病毒与人体细胞表面受体血管紧张转化酶2(ACE2)的亲和力,从而具备较强的“人传人”能力 [6 - 7] MERS-CoV(中东呼吸综合征冠状病毒) 2012.9 沙特阿拉伯 34% 二肽基肽酶
4(DPP4)S蛋白被人的蛋白酶切割激活,然后与人体细胞表面受体二肽基肽酶4(DPP4)结合 [8] SARS-CoV-2(严重急性呼吸综合征冠状病毒2) 2019.12 中国武汉 估计值
6.6%血管紧张转化酶2(ACE2) 跨膜丝氨酸蛋白酶(TMPRSS2)启动S蛋白启动,S蛋白再以血管紧张转化酶2(ACE2)为受体进入细胞 [9 - 10] 表 2 冠状病毒在各种物体表面存活时间
Table 2. Coronavirus survival time on the surface of various objects
表面介质
Surface medium病毒
Virus接种量/mL
Inoculum TCID50温度/℃
Temperature相对湿度/%
Relative humidity存活时间
Survival time参考文献
References塑料 SARS-CoV 105 21—23 40 3 d [86] SARS-CoV 105 室温 NR1 4 d [87] SARS-CoV 105 22—25 40—50 5 d [88] MERS-CoV 105 20 40 2 d [89] SARS-CoV-2 105 21—23 40 3 d [86] SARS-CoV-2 106 室温 65 7 d [90] 不锈钢 SARS-CoV 105 21—23 40 2 d [86] MERS-CoV 105 20 40 2 d [89] SARS-CoV-2 105 21—23 40 2 d [86] SARS-CoV-2 106 室温 65 7 d [90] 纸质 SARS-CoV 104 室温 NR <5 min [91] SARS-CoV 105 室温 NR 3 h [91] SARS-CoV 106 室温 NR 24 h [91] SARS-CoV 105 21—23 40 8 h [86] SARS-CoV 105 室温 NR 4 d [87] SARS-CoV-2 105 21—23 40 1 d [86] SARS-CoV-2 106 室温 65 4 d [90] 铜 SARS-CoV 105 21—23 40 8 h [86] SARS-CoV-2 105 21—23 40 4 h [86] 玻璃 SARS-CoV 105 室温 NR 4 d [87] SARS-CoV-2 106 室温 65 4 d [90] 棉布 SARS-CoV 104 室温 NR 5 min [91] SARS-CoV 105 室温 NR 1 h [91] SARS-CoV 106 室温 NR 24 h [91] 木材 SARS-CoV 105 室温 NR 4 d [87] 1NR(Not Reported):未报告. -
[1] World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard [EB/OL]. [2021-1-27]. https://covid19.who.int/. [2] LAI C C, SHIH T P, KO W C, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges [J]. International Journal of Antimicrobial Agents, 2020, 55(3): 105924. doi: 10.1016/j.ijantimicag.2020.105924 [3] KUMAR S, SINGH R, KUMARI N, et al. Current understanding of the influence of environmental factors on SARS-CoV-2 transmission, persistence, and infectivity [J]. Environmental Science and Pollution Research, 2021, 28(6): 6267-6288. doi: 10.1007/s11356-020-12165-1 [4] CHAN F W, KOK K H, ZHU Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan [J]. Emerging Microbes and Infections, 2020, 9(1): 221-236. doi: 10.1080/22221751.2020.1719902 [5] ABOUBAKR H A, SHARAFELDIN T A, GOYAL S M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review [J]. Transboundary and Emerging Diseases, 2021, 68(2): 296-312. doi: 10.1111/tbed.13707 [6] HILGENFELD R, PEIRIS M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses [J]. Antiviral Research, 2013, 100(1): 286-295. doi: 10.1016/j.antiviral.2013.08.015 [7] GE X Y, LI J L, YANG X L, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor [J]. Nature, 2013, 503(7477): 535-538. doi: 10.1038/nature12711 [8] KANDEIL A, GOMAA M, NAGEH A, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Africa and Middle East [J]. Viruses, 2019, 11(8): 717. doi: 10.3390/v11080717 [9] HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor [J]. cell, 2020, 181(2): 271-280. doi: 10.1016/j.cell.2020.02.052 [10] TOYOSHIMA Y, NEMOTO K, MATSUMOTO S, et al. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19 [J]. Journal of Human Genetics, 2020, 65(12): 1075-1082. doi: 10.1038/s10038-020-0808-9 [11] YAN R H, ZHANG Y Y, LI Y N, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 [J]. Science, 2020, 367(6485): 1444-1448. doi: 10.1126/science.abb2762 [12] WALLS A C, PARK Y J, TORTORICI M A, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein [J]. Cell, 2020, 181(2): 281-292.e6. doi: 10.1016/j.cell.2020.02.058 [13] WRAPP D, WANG N, CORBETT K S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation [J]. Science, 2020, 367(6483): 1260-1263. doi: 10.1126/science.abb2507 [14] HU B, GUO H, ZHOU P, et al. Characteristics of SARS-CoV-2 and COVID-19 [J]. Nature Reviews Microbiology, 2020, 19(3): 141-154. doi: 10.1038/s41579-020-00459-7 [15] GALLOWAY S E, PAUL P, MACCANNELL D R, et al. Emergence of SARS-CoV-2 b. 1.1. 7 lineage—united states, december 29, 2020–january 12, 2021 [J]. Morbidity and Mortality Weekly Report, 2021, 70(3): 95-99. doi: 10.15585/mmwr.mm7003e2 [16] TEGALLY H, WILKINSON E, GIOVANETTI M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa[J]. medRxiv, 2020 (preprint), [2021-2-27]. https://www.medrxiv.org/content/10.1101/2020.12.21.20248640v1.full. [17] LU R, ZHAO X, LI J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding [J]. The Lancet, 2020, 395(10224): 565-574. doi: 10.1016/S0140-6736(20)30251-8 [18] ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [J]. Nature, 2020, 579(7798): 270-273. doi: 10.1038/s41586-020-2012-7 [19] ZHANG T, WU Q F, ZHANG Z G. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak [J]. Current Biology, 2020, 30(7): 1346-1351.e2. doi: 10.1016/j.cub.2020.03.022 [20] XIAO K P, ZHAI J Q, FENG Y Y, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins [J]. Nature, 2020, 583(7815): 286-289. doi: 10.1038/s41586-020-2313-x [21] WACHARAPLUESADEE S, TAN C W, MANEEORN P, et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia [J]. Nature Communications, 2021, 12(1): 972. doi: 10.1038/s41467-020-20314-w [22] LAM T T Y, JIA N, ZHANG Y W, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins [J]. Nature, 2020, 583(7815): 282-285. doi: 10.1038/s41586-020-2169-0 [23] ORESHKOVA N, MOLENAAR R J, VREMAN S, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020 [J]. Eurosurveillance, 2020, 25(23): 2001005. [24] MUNNINK B B O, SIKKEMA R S, NIEUWENHUIJSE D F, et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans [J]. Science, 2021, 371(6525): 172-177. doi: 10.1126/science.abe5901 [25] ZHOU P, SHI Z-L. SARS-CoV-2 spillover events [J]. Science, 2021, 371(6525): 120-122. doi: 10.1126/science.abf6097 [26] LIU Z X, XIAO X, WEI X L, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2 [J]. Journal of Medical Virology, 2020, 92(6): 595-601. doi: 10.1002/jmv.25726 [27] WU F, ZHAO S, YU B, et al. A new coronavirus associated with human respiratory disease in China [J]. Nature, 2020, 579(7798): 265-269. doi: 10.1038/s41586-020-2008-3 [28] World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, 09 July 2020. [EB/OL]. [2021-1-27]. https://apps.who.int/iris/handle/10665/333114. [29] WEI W E, LI Z B, CHIEW C J, et al. Presymptomatic transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020 [J]. MMWR. Morbidity and Mortality Weekly Report, 2020, 69(14): 411-415. doi: 10.15585/mmwr.mm6914e1 [30] PAN Y, ZHANG D T, YANG P, et al. Viral load of SARS-CoV-2 in clinical samples [J]. The Lancet. Infectious Diseases, 2020, 20(4): 411-412. doi: 10.1016/S1473-3099(20)30113-4 [31] CHAN J F W, YUAN S, KOK K H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster [J]. The lancet, 2020, 395(10223): 514-523. doi: 10.1016/S0140-6736(20)30154-9 [32] HU L G, GAO J, YAO L L, et al. Evidence of foodborne transmission of the coronavirus (COVID-19) through the animal products food supply chain [J]. Environmental Science & Technology, 2021, 55(5): 2713-2716. [33] JAYAWEERA M, PERERA H, GUNAWARDANA B, et al. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy [J]. Environmental Research, 2020, 188: 109819. doi: 10.1016/j.envres.2020.109819 [34] ORTIZ-PRADO E, SIMBAñA-RIVERA K, GÓMEZ-BARRENO L, et al. Clinical, molecular and epidemiological characterization of the SARS-CoV2 virus and the Coronavirus disease 2019 (COVID-19), a comprehensive literature review [J]. DiagnosTic Microbiology and Infectious Disease, 2020, 98(1): 115094. doi: 10.1016/j.diagmicrobio.2020.115094 [35] HUANG C, WANG Y, LI X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J]. The lancet, 2020, 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5 [36] MENNI C, VALDES A M, FREIDIN M B, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19 [J]. Nature Medicine, 2020, 26(7): 1037-1040. doi: 10.1038/s41591-020-0916-2 [37] YOUNG T K, SHAW K S, SHAH J K, et al. Mucocutaneous manifestations of multisystem inflammatory syndrome in children during the COVID-19 pandemic [J]. JAMA Dermatology, 2021, 157(2): 207-212. doi: 10.1001/jamadermatol.2020.4779 [38] HUBICHE T, CARDOT-LECCIA N, LE DUFF F, et al. Clinical, laboratory, and interferon-alpha response characteristics of patients with chilblain-like lesions during the COVID-19 pandemic [J]. JAMA Dermatology, 2021, 157(2): 202-206. doi: 10.1001/jamadermatol.2020.4324 [39] LONG Q X, TANG X J, SHI Q L, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections [J]. Nature Medicine, 2020, 26(8): 1200-1204. doi: 10.1038/s41591-020-0965-6 [40] CHEN N, ZHOU M, DONG X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study [J]. The lancet, 2020, 395(10223): 507-513. doi: 10.1016/S0140-6736(20)30211-7 [41] 詹菁, 刘倩, 张雨竹, 等. 新型冠状病毒2019-nCoV的一些初步认识 [J]. 环境化学, 2020, 39(2): 283-291. doi: 10.7524/j.issn.0254-6108.2020021501 ZHAN J, LIU Q, ZHANG Y Z, et al. Preliminary understanding of the novel coronavirus 2019-nCoV [J]. Environmental Chemistry, 2020, 39(2): 283-291(in Chinese). doi: 10.7524/j.issn.0254-6108.2020021501
[42] 王洁, 高嵩钰, 朱仁心, 等. 当前新冠病毒的主要检测手段 [J]. 中国比较医学杂志, 2021, 31(1): 120-124. WANG J, GAO S Y, ZHU R X, et al. Main detection methods of SARS-CoV-2 [J]. Chinese Journal of Comparative Medicine, 2021, 31(1): 120-124(in Chinese).
[43] MATHEW R P, JOSE M, JAYARAM V, et al. Current status quo on COVID-19 including chest imaging [J]. World Journal of Radiology, 2020, 12(12): 272. doi: 10.4329/wjr.v12.i12.272 [44] CARTER L J, GARNER L V, SMOOT J W, et al. Assay techniques and test development for COVID-19 diagnosis [J]. ACS Central Science, 2020, 6(5): 591-605. doi: 10.1021/acscentsci.0c00501 [45] 王春霞, 曲广波, 陈拥军. 新型冠状病毒肺炎疫情防控中的化学力量 [J]. 科学通报, 2020, 65(22): 2321-2325. doi: 10.1360/TB-2020-0600 WANG C X, QU G B, CHEN Y J. Coronavirus (COVID-19) combat: The power of chemistry [J]. Chinese Science Bulletin, 2020, 65(22): 2321-2325(in Chinese). doi: 10.1360/TB-2020-0600
[46] LI Z, LIU G L, WANG L, et al. From the insight of glucose metabolism disorder: Oxygen therapy and blood glucose monitoring are crucial for quarantined COVID-19 patients [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110614. doi: 10.1016/j.ecoenv.2020.110614 [47] COVID-19 Vaccine & Therapeutics Tracker [EB/OL]. [2021-1-15]. https://biorender.com/covid-vaccine-tracker. [48] LI H, LIU Z, GE J B. Scientific research progress of COVID-19/SARS-CoV-2 in the first five months [J]. Journal of Cellular and Molecular Medicine, 2020, 24(12): 6558-6570. doi: 10.1111/jcmm.15364 [49] 邢颖, 刘文彬. 抗击新型冠状病毒肺炎的药物和治疗方案的阶段性研究进展 [J]. 科学通报, 2020, 65(22): 2326-2333. doi: 10.1360/TB-2020-0194 XING Y, LIU W B. Recent research for COVID-19 drugs and therapies [J]. Chinese Science Bulletin, 2020, 65(22): 2326-2333(in Chinese). doi: 10.1360/TB-2020-0194
[50] MALIN J J, SUÁREZ I, PRIESNER V, et al. Remdesivir against COVID-19 and other viral diseases [J]. Clinical Microbiology Reviews, 2020, 34(1). doi: 10.1128/CMR.00162-20 [51] CONSORTIUM W S T. Repurposed antiviral drugs for COVID-19—interim WHO SOLIDARITY trial results [J]. New England Journal of Medicine, 2021, 384(6): 497-511. doi: 10.1056/NEJMoa2023184 [52] CAO B, WANG Y M, WEN D N, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19 [J]. The New England Journal of Medicine, 2020, 382(19): 1787-1799. doi: 10.1056/NEJMoa2001282 [53] YANG C G, KE C J, YUE D Y, et al. Effectiveness of arbidol for COVID-19 prevention in health professionals [J]. Frontiers in Public Health, 2020, 8: 249. doi: 10.3389/fpubh.2020.00249 [54] 国药集团. 国药集团中国生物新冠灭活疫苗获批附条件上市 [EB/OL]. [2020-12-31]. http://www.sinopharm.com/s/1223-4126-38840.html. SINOPHARM.. Sinopharm China Biotech Covid-19 Inactivated Vaccine Approved for Conditional Listing [EB/OL]. [2020-12-31]. http://www.sinopharm.com/s/1223-4126-38840.html(in Chinese).
[55] 央视网. 我国新冠疫苗研发进度持续推进 已于7月22日启动疫苗紧急使用[EB/OL]. [2020-8-23]. https://news.cctv.com/2020/08/23/ARTIWp0QA3GdDkgXxmPSrBWX200823.shtml. CCTV. The progress of my country’s new crown vaccine research and development continues, and emergency use of the vaccine has been launched on July 22 [EB/OL]. [2020-8-23]. https://news.cctv.com/2020/08/23/ARTIWp0QA3GdDkgXxmPSrBWX200823.shtml(in Chinese).
[56] 央广网. 国家卫健委: 全国累计报告接种新冠疫苗4052万剂次[EB/OL]. [2021-2-10]http://health.cnr.cn/yg/20210210/t20210210_525412739.shtml. Cnr. cn. National Health Commission: 40.52 million doses of COVID-19 vaccine reported nationwide [EB/OL]. [2021-2-10]http://health.cnr.cn/yg/20210210/t20210210_525412739.shtml(in Chinese).
[57] ZHU F C, GUAN X H, LI Y H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial [J]. Lancet, 2020, 396(10249): 479-488. doi: 10.1016/S0140-6736(20)31605-6 [58] 京报网. 陈薇团队新冠疫苗三期临床试验结果 [EB/OL]. [2021-2-9]. https://news.bjd.com.cn/2021/02/09/48641t100.html. JBW. The phase Ⅲ clinical trial results results of Ad5-nCoV [EB/OL]. [2021-2-9]. https://news.bjd.com.cn/2021/02/09/48641t100.html (in Chinese).
[59] TANG J W. The effect of environmental parameters on the survival of airborne infectious agents [J]. Journal of the Royal Society, Interface, 2009, 6(Suppl 6): S737-S746. [60] RIDDELL S, GOLDIE S, HILL A, et al. The effect of temperature on persistence of SARS-CoV-2 on common surfaces [J]. Virology Journal, 2020, 17(1): 145. doi: 10.1186/s12985-020-01418-7 [61] BUKHARI Q, MASSARO J M, D’AGOSTINO R B, et al. Effects of weather on coronavirus pandemic [J]. International Journal of Environmental Research and Public Health, 2020, 17(15): 5399. doi: 10.3390/ijerph17155399 [62] LOWEN A C, MUBAREKA S, STEEL J, et al. Influenza virus transmission is dependent on relative humidity and temperature [J]. PLoS Pathogens, 2007, 3(10): 1470-1476. [63] CASANOVA L M, JEON S, RUTALA W A, et al. Effects of air temperature and relative humidity on coronavirus survival on surfaces [J]. Applied and Environmental Microbiology, 2010, 76(9): 2712-2717. doi: 10.1128/AEM.02291-09 [64] QI H C, XIAO S, SHI R Y, et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis [J]. The Science of the Total Environment, 2020, 728: 138778. doi: 10.1016/j.scitotenv.2020.138778 [65] XIE J, ZHU Y. Association between ambient temperature and COVID-19 infection in 122 cities from China [J]. Science of the Total Environment, 2020, 724: 138201. doi: 10.1016/j.scitotenv.2020.138201 [66] FISHER D, REILLY A, ZHENG A K E, et al. Seeding of outbreaks of COVID-19 by contaminated fresh and frozen food[J]. BioRxiv, 2020, (BioRxiv). https://www.biorxiv.org/content/10.1101/2020.08.17.255166v1.abstract. [67] PANG X H, REN L L, WU S S, et al. Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing [J]. National Science Review, 2020, 7(12): 1861-1864. doi: 10.1093/nsr/nwaa264 [68] CEYLAN Z, MERAL R, CETINKAYA T. Relevance of SARS-CoV-2 in food safety and food hygiene: Potential preventive measures, suggestions and nanotechnological approaches [J]. VirusDisease, 2020, 31(2): 154-160. doi: 10.1007/s13337-020-00611-0 [69] YAO Y, PAN J, LIU Z, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities [J]. European Respiratory Journal, 2020, 55(5): 2000517. doi: 10.1183/13993003.00517-2020 [70] BHATTACHARJEE S. Statistical investigation of relationship between spread of coronavirus disease (COVID-19) and environmental factors based on study of four mostly affected places of China and five mostly affected places of Italy[J]. arXiv preprint arXiv: 200311277, 2020 https://arxiv.org/abs/2003.11277 (preprint). [71] QU G B, LI X D, HU L G, et al. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19) [J]. Environmental Science & Technology, 2020, 54(7): 3730-3732. [72] ZHAN J, LIU Q S, SUN Z D, et al. Environmental impacts on the transmission and evolution of COVID-19 combing the knowledge of pathogenic respiratory coronaviruses [J]. Environmental Pollution, 2020, 267: 115621. doi: 10.1016/j.envpol.2020.115621 [73] CUI Y, ZHANG Z-F, FROINES J, et al. Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study [J]. Environmental Health, 2003, 2(1): 1-5. doi: 10.1186/1476-069X-2-1 [74] ZHU Y J, XIE J G, HUANG F M, et al. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China [J]. The Science of the Total Environment, 2020, 727: 138704. doi: 10.1016/j.scitotenv.2020.138704 [75] CONTINI D, COSTABILE F. Does air pollution influence COVID-19 outbreaks?[M]. Multidisciplinary Digital Publishing Institute. 2020, 11(4). DOI: 10.1016/j.scitotenv.2020.138704. [76] LIU Y, NING Z, CHEN Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals [J]. Nature, 2020, 582(7813): 557-560. doi: 10.1038/s41586-020-2271-3 [77] de GRAAF M, BECK R, CACCIO S M, et al. Sustained fecal-oral human-to-human transmission following a zoonotic event [J]. Current Opinion in Virology, 2017, 22: 1-6. doi: 10.1016/j.coviro.2016.11.001 [78] WU Y J, GUO C, TANG L T, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples [J]. The Lancet. Gastroenterology & Hepatology, 2020, 5(5): 434-435. [79] TRAN H N, LE G T, NGUYEN D T, et al. SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern [J]. Environmental Research, 2020, 193: 110265. doi: 10.1016/j.envres.2020.110265 [80] YU I T S, LI Y G, WONG T W, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus [J]. The New England Journal of Medicine, 2004, 350(17): 1731-1739. doi: 10.1056/NEJMoa032867 [81] AHMED W, ANGEL N, EDSON J, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community [J]. The Science of the Total Environment, 2020, 728: 138764. doi: 10.1016/j.scitotenv.2020.138764 [82] LA R G, IACONELLI M, MANCINI P, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy [J]. The Science of the Total Environment, 2020, 736: 139652. doi: 10.1016/j.scitotenv.2020.139652 [83] MEDEMA G, HEIJNEN L, ELSINGA G, et al. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands [J]. Environmental Science & Technology Letters, 2020, 7(7): 511-516. [84] SALAJEGHEH TAZERJI S, MAGALHÃES DUARTE P, RAHIMI P, et al. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to animals: An updated review [J]. Journal of Translational Medicine, 2020, 18(1): 358. doi: 10.1186/s12967-020-02534-2 [85] ESLAMI H, JALILI M. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19) [J]. AMB Express, 2020, 10(1): 92. doi: 10.1186/s13568-020-01028-0 [86] van DOREMALEN N, BUSHMAKER T, MORRIS D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1 [J]. The New England Journal of Medicine, 2020, 382(16): 1564-1567. doi: 10.1056/NEJMc2004973 [87] DUAN S M, ZHAO X S, WEN R F, et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation [J]. Biomedical and Environmental Sciences, 2003, 16(3): 246-255. [88] CHAN K H, PEIRIS J S M, LAM S Y, et al. The effects of temperature and relative humidity on the viability of the SARS coronavirus [J]. Advances in Virology, 2011, 2011: 734690. [89] VAN D N, BUSHMAKER T, Munster V J. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions [J]. Eurosurveillance, 2013, 18(38): 20590. [90] CHIN A W H, CHU J T S, PERERA M R A, et al. Stability of SARS-CoV-2 in different environmental conditions [J]. The Lancet. Microbe, 2020, 1(1): e10. doi: 10.1016/S2666-5247(20)30003-3 [91] LAI M Y Y, CHENG P K C, LIM W W L. Survival of severe acute respiratory syndrome coronavirus [J]. Clinical Infectious Diseases, 2005, 41(7): e67-e71. doi: 10.1086/433186 [92] LIU P, YANG M, ZHAO X, et al. Cold-chain transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in destination: Successful isolation of SARS-CoV-2 virus from the imported frozen cod package surface [J]. Biosafety and Health, 2020, 2(4): 199-201. doi: 10.1016/j.bsheal.2020.11.003 [93] CHAN K H, POON L L L M, CHENG V C C, et al. Detection of SARS coronavirus in patients with suspected SARS [J]. Emerging Infectious Diseases, 2004, 10(2): 294-299. doi: 10.3201/eid1002.030610 [94] XIAO F, TANG M W, ZHENG X B, et al. Evidence for gastrointestinal infection of SARS-CoV-2 [J]. Gastroenterology, 2020, 158(6): 1831-1833.e3. doi: 10.1053/j.gastro.2020.02.055 [95] CARRATURO F, del GIUDICE C, MORELLI M, et al. Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces [J]. Environmental Pollution, 2020, 265(Pt B): 115010. [96] WANG X, LI J, GUO T, et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital of the Chinese People’s Liberation Army [J]. Water Science and Technology, 2005, 52(8): 213-221. doi: 10.2166/wst.2005.0266 [97] AL HURAIMEL K, ALHOSANI M, KUNHABDULLA S, et al. SARS-CoV-2 in the environment: Modes of transmission, early detection and potential role of pollutions [J]. The Science of the Total Environment, 2020, 744: 140946. doi: 10.1016/j.scitotenv.2020.140946 [98] HOKAIRVI A M, RYTKNEN A, TIWARI A, et al. The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland [J]. Science of The Total Environment, 2021, 770: 145274. doi: 10.1016/j.scitotenv.2021.145274 [99] RIMOLDI S G, STEFANI F, GIGANTIELLO A, et al. Presence and vitality of SARS-CoV-2 virus in wastewaters and rivers [J]. Science of The Total Environment, 2020: 140911. doi: 10.1016/j.scitotenv.2020.140911 [100] WU F, ZHANG J, XIAO A, et al. SARS-CoV-2 Titers in wastewater are higher than expected from clinically confirmed cases [J]. mSystems, 2020, 5(4): e00614-20. doi: 10.1128/mSystems.00614-20 [101] KRAMER A, SCHWEBKE I, KAMPF G. How long do nosocomial pathogens persist on inanimate surfaces?A systematic review [J]. BMC Infectious Diseases, 2006, 6(1): 130. doi: 10.1186/1471-2334-6-130 [102] YAO L, ZHU W, SHI J, et al. Detection of coronavirus in environmental surveillance and risk monitoring for pandemic control [J]. Chemical Society Reviews, 2021, 50(6): 3656-3676. doi: 10.1039/D0CS00595A [103] CHEN K, WANG M, HUANG C H, et al. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China [J]. The Lancet. Planetary Health, 2020, 4(6): e210-e212. doi: 10.1016/S2542-5196(20)30107-8 [104] CHU B W, ZHANG S P, LIU J, et al. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic [J]. Journal of Environmental Sciences (China), 2021, 99: 346-353. doi: 10.1016/j.jes.2020.06.031 [105] ESPEJO W, CELIS J E, CHIANG G, et al. Environment and COVID-19: Pollutants, impacts, dissemination, management and recommendations for facing future epidemic threats [J]. The Science of the Total Environment, 2020, 747: 141314. doi: 10.1016/j.scitotenv.2020.141314 [106] LE QUÉRÉ C, PETERS G P, FRIEDLINGSTEIN P, et al. Fossil CO2 emissions in the post-COVID-19 era [J]. Nature Climate Change, 2021, 11(3): 197-199. doi: 10.1038/s41558-021-01001-0 [107] ZAMBRANO-MONSERRATE M A, RUANO M A, SANCHEZ-ALCALDE L. Indirect effects of COVID-19 on the environment [J]. The Science of the Total Environment, 2020, 728: 138813. doi: 10.1016/j.scitotenv.2020.138813 [108] FADARE O O, OKOFFO E D. Covid-19 face masks: A potential source of microplastic fibers in the environment [J]. The Science of the Total Environment, 2020, 737: 140279. doi: 10.1016/j.scitotenv.2020.140279 [109] ARAGAW T A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario [J]. Marine Pollution Bulletin, 2020, 159: 111517. doi: 10.1016/j.marpolbul.2020.111517 [110] GHAYEBZADEH M, TAGHIPOUR H, ASLANI H. Estimation of plastic waste inputs from land into the Persian Gulf and the Gulf of Oman: An environmental disaster, scientific and social concerns [J]. Science of The Total Environment, 2020, 733: 138942. doi: 10.1016/j.scitotenv.2020.138942 [111] MAGALHES S, ALVES L, MEDRONHO B, et al. Microplastics in ecosystems: From current trends to bio-based removal strategies [J]. Molecules, 2020, 25(17): 3954. doi: 10.3390/molecules25173954 [112] LI Z G, SONG G F, BI Y H, et al. Occurrence and distribution of disinfection byproducts in domestic wastewater effluent, tap water, and surface water during the SARS-CoV-2 pandemic in China [J]. Environmental Science & Technology, 2021, 55(7): 4103-4114.