-
多氯联苯(PCBs)是联苯经金属催化反应,苯环上的氢原子被1—10个氯原子不同程度取代而形成的氯代芳香族化合物,其分子式为C12H10-XClX[1-2]。209 种PCBs同系物中有78种因分子存在手性轴而具有手性,其中19种可在室温下稳定存在,称其为手性PCBs[3]。手性PCBs在自然环境条件下极难降解,能长时间存留于环境中。手性PCBs占工业PCB制造总量的6%,并且在野外动植物、大气、实验动物和人体内可选择性富集[4]。在2011—2014年期间,中国长城站在南极西部的大气检测到手性PCBs的残留,PCB95、PCB136、PCB149、PCB174和PCB 176的EF值分别是0.438—0.541、0.425—0.654、0.422— 0.606、0.193—0.830和0.288—0.724[5]。2018年,He等研究了手性PCB 95和PCB149在无脊椎动物蚯蚓体内的富集,发现(+)-PCB95和(+)-PCB149在蚯蚓体内优先富集[6]。Bordajandi等对西班牙母乳样品中10种手性PCBs进行测定,结果发现PCB 91、95和149在所有母乳样品中均以外消旋体存在[7]。研究表明,普遍存在于动物、植物、昆虫和微生物体内的细胞色素单加氧酶P-450(CYP450)参与PCBs各异构体的生物富集与代谢过程,并具有明显的对映体选择性,这与酶的独特手性活性位点有关[8-9]。并且在细胞色素单加氧酶P-450(CYP450)的作用下,手性PCBs会转化成羟基化PCB代谢产物(OH-PCBs),代谢产物同样具有手性特征[10]。被称为大自然的"绿色肝脏"的植物可将吸收的污染物在体内降解代谢或转化成其他低毒物质来净化环境,手性化合物经由根部和叶片进入植物体内后在植物体内迁移转化、代谢和累积等的过程均可能存在对映体选择性。因此,研究植物体内手性PCBs的分布和对映体选择性富集特征具有重要的意义,然而当前对植物体内PCBs分布和累积特征的研究主要集中于非手性PCBs [11-12],手性PCBs的选择性累积和富集作用研究较少。
研究证实电子拆解活动会导致电子设备中的PCBs释放到周围的土壤、大气、水体等环境中[13- 14],环境中的PCBs可通过植物吸收进入食物链,威胁人体健康效应[15],因此,研究手性PCBs在农产品中的分布和迁移转化对农产品安全及生态风险预警具有非常重要的意义。
本研究选取与当地群众膳食密切相关的玉米为研究对象,通过对苗期、穗期和花粒期等3个生长周期的玉米植株的根、茎、叶和果实中手性PCBs的分布规律和对映选择性累积特征进行研究,初步揭示植物体内手性PCBs的选择性迁移及富集规律,为准确评价其对人类健康和生态环境风险提供基础数据。
典型手性多氯联苯在电子垃圾拆解区玉米中分布及富集规律
Distribution and bioaccumulation of chiral polychlorinated biphenyls in the maize from an e-waste site
-
摘要: 多氯联苯(PCBs)是一类化学性质非常稳定的氯化芳烃化合物,本文揭示了手性PCBs在玉米中的污染水平、分布特征和累积规律,测定并计算了玉米样品中的7种手性PCBs含量和对映体百分数值(enantiomer fractions,EF)。结果表明,玉米不同器官中总手性PCBs的浓度范围为87.6—294.3 ng·g-1,PCB91、PCB95、PCB136和PCB149在采集的玉米样品中均有检出,除了穗期和花粒期茎中手性PCBs,5种手性PCBs在玉米不同生长时期不同部位的浓度水平均为PCB95>PCB132>PCB136> PCB91>PCB149。从不同生长期时间变化上看,玉米中手性PCBs单体和总量在植物中的浓度均随着生长的延长而降低,即苗期>穗期≈花粒期。玉米中PCB91、PCB95、PCB132、PCB136和PCB149的EF均值分别为0.584±0.010、0.574±0.008、0.363±0.014、0.389±0.012和0.449±0.006。在全部可检出手性PCBs的玉米样品中全部的PCB95、PCB132、PCB136和90.9%的PCB91,81.8%的PCB149具有非外消旋特征,玉米中的手性PCBs对映体选择性累积作用随着植物的生长而不断增强。上述结果说明,该地区玉米样品受到了手性PCBs的污染,手性PCBs从土壤进入玉米的过程中发生了生物转化,本研究为准确评价其对人类健康和生态环境风险提供基础数据。Abstract: Polychlorinated biphenyls (PCBs) are a class of chemically stable chlorinated aromatic compounds. This paper revealed the pollution levels, distribution characteristics and accumulation rules of chiral PCBs in maize. The concentrations of 7 kinds of chiral PCBs in maize samples, the enantiomeric concentrations and enantiomer fractions (EF) were measured. The results showed that the levels of total chiral PCBs in different organs of maize ranged from 87.6 — 294.3 ng·g−1. PCB91, PCB95, PCB136 and PCB149 were all detected in the collected maize samples. In addition to the chiral PCBs in the stems at the heading and flowering stages, the concentration levels of the 5 chiral PCBs in different parts of the maize at different growth stages from high to low were PCB95>PCB132>PCB136>PCB91>PCB149. The concentration of monochiral PCBs and total chiral PCBs in plants decreased with the growth of the plant, and the concentration levels showed that seedling stage> ear stage ≈ flowering stage. The average EF of PCB91, PCB95, PCB132, PCB136 and PCB149 in maize were 0.584±0.010, 0.574±0.008, 0.363±0.014, 0.389±0.012 and 0.449±0.006, respectively. In all maize samples, all PCB95, PCB132, PCB136, 90.9% PCB91 and 81.8% PCB149 had non-racemic characteristics, the selective enantioselective accumulation of chiral PCBs in maize increased with the growth of plants. The results indicated that maize samples in this area were contaminated with chiral PCBs, and biotransformation occurred during the process of chiral PCBs entering the maize from the soil. This study provided basic data for accurately assessing PCBs risks to human health and ecological environment.
-
Key words:
- chiral PCBs /
- maize /
- e-waste /
- bioaccumulation /
- enantiomeric composition
-
表 1 玉米不同生长期不同组织器官中手性PCBs同系物浓度水平(ng·g−1)
Table 1. Concentration of target PCBs in each organ in three growth periods of maize (ng·g−1)
时期 Period 部位 Part PCB45 PCB91 PCB95 PCB132 PCB136 PCB149 PCB174 ΣPCBs 苗期 根 − 50.4 79.7 51.9 45.2 27.2 − 254.4 茎 − 42.9 62.8 34.6 26.4 15.4 − 182.1 叶 3.9 62.6 81.3 53.2 44.8 41.6 6.9 294.3 穗期 根 − 19.5 46.7 33.6 26.1 13.7 − 139.6 茎 − 10.8 38.9 − 24.4 13.5 − 87.6 叶 − 23.9 59.5 49.3 28.7 28.4 − 189.8 果 − 27.9 53.4 46.1 35.4 37.6 − 200.4 花粒期 根 − 23.6 33.6 47.0 31.5 22.3 4.3 162.3 茎 − 18.7 21.8 − 27.6 21.9 − 90.0 叶 − 29.4 40.1 33.7 27.6 20.4 − 151.2 果 − 41.5 50.7 43.1 42.7 28.3 − 206.3 ΣPCBs 3.9 351.2 568.5 392.5 360.4 270.3 11.2 − 表 2 玉米不同生长期不同组织器官中手性PCBs的EFs值
Table 2. EFs for target PCBs in each organ in three growth periods of maize
时期 Period 部位 Part PCB45 PCB91 PCB95 PCB132 PCB136 PCB149 PCB174 苗期 根 − 0.522 0.536 0.444 0.453 0.480 − 茎 − 0.592 0.576 0.352 0.403 0.462 − 叶 0.573 0.542 0.546 0.430 0.448 0.476 0.436 穗期 根 − 0.551 0.552 0.394 0.421 0.464 − 茎 − 0.591 0.583 − 0.381 0.437 − 叶 − 0.576 0.568 0.387 0.400 0.451 − 果 − 0.594 0.578 0.328 0.370 0.429 − 花粒期 根 − 0.589 0.571 0.327 0.374 0.455 0.517 茎 − 0.615 0.583 − 0.361 0.446 − 叶 − 0.602 0.587 0.313 0.352 0.432 − 果 − 0.646 0.634 0.294 0.316 0.408 − -
[1] POZO K, URBINA W, G MEZ V, et al. Persistent organic pollutants sorbed in plastic resin pellet — “Nurdles” from coastal areas of Central Chile [J]. Marine Pollution Bulletin, 2020, 151: 110786. doi: 10.1016/j.marpolbul.2019.110786 [2] 田倩, 刘英, 张丽, 等. 武汉市火车站广场灰尘中PCBs的污染特征及评价 [J]. 环境化学, 2019, 38(6): 1367-1374. doi: 10.7524/j.issn.0254-6108.2018082004 TIAN Q, LIU Y, ZHANG L, et al. Pollution characteristics and evaluation of PCBs in the square dust from Wuhan's railway stations [J]. Environmental Chemistry, 2019, 38(6): 1367-1374(in Chinese). doi: 10.7524/j.issn.0254-6108.2018082004
[3] KANIA-KORWEL I and LEHMLER H-J Chiral polychlorinated biphenyls: absorption, metabolism and excretion—A review[J]. Environmental Science and Pollution Research, 2016, 23(3): 2042-2057. [4] WANG S, LUO C, ZHANG D, et al. Reflection of stereoselectivity during the uptake and acropetal translocation of chiral PCBs in plants in the presence of copper [J]. Environmental Science & Technology, 2017, 51(23): 13834-13841. [5] WANG P, LI Y, ZHANG Q, et al. Three-year monitoring of atmospheric PCBs and PBDEs at the chinesecreat wall station, west antarctica: levels, chiral signature, environmental behaviors and source implication [J]. Atmospheric Environment, 2017, 150: 407-416. doi: 10.1016/j.atmosenv.2016.11.036 [6] HE Z, XU Y, WANG W, et al. Stereoselective bioaccumulation and elimination of chiral PCBs 95 and 149 in earthworm Eisenia fetida [J]. Chemosphere, 2018, 212: 497-503. doi: 10.1016/j.chemosphere.2018.08.075 [7] BORDAJANDI L R, ABAD E and GONZ LEZ M J .Occurrence of PCBs, PCDD/Fs, PBDEs and DDTs in spanish breast milk: enantiomeric fraction of chiral PCBs[J]. Chemosphere, 2008, 70(4): 567-575. [8] LEHMLER H J, HARRAD S J, H HNERFUSS H, et al. Chiral polychlorinated biphenyl transport, metabolism, and distribution: a review [J]. Environmental Science & Technology, 2010, 44(8): 2757-2766. [9] IZABELA K K, DUFFEL M W, LEHMLER H J. Gas chromatographic analysis with chiral cyclodextrin phases reveals the enantioselective formation of hydroxylated polychlorinated biphenyls by rat liver microsomes [J]. Environmental Science & Technology, 2011, 45(22): 9590-9596. [10] WARNER N A, MARTIN J W , WONG C S. Chiral polychlorinated biphenyls are biotransformed enantioselectively by mammalian cytochrome P-450 isozymes to form hydroxylated metabolites [J]. Environmental Science & Technology, 2009, 43(1): 114-121. [11] HOOGENBOOM R L A P, KLOP A, HERBES R, et al. Carry-over of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in dairy cows fed smoke contaminated maize silage or sugar beet pulp [J]. Chemosphere, 2015, 137: 214-220. doi: 10.1016/j.chemosphere.2015.07.040 [12] MUMTAZ M, MEHMOOD A, QADIR A, et al. Polychlorinated biphenyl (PCBs) in rice grains and straw; risk surveillance, congener specific analysis, distribution and source apportionment from selected districts of Punjab Province, Pakistan [J]. Science of The Total Environment, 2016, 543: 620-627. doi: 10.1016/j.scitotenv.2015.10.126 [13] LI J, ZENG X, CHEN M, et al. “Control-alt-delete”: Rebooting solutions for thee-waste problem [J]. Environmental Science & Technology, 2015, 49(12): 7095-7108. [14] 林娜娜, 单振华, 朱崇岭, 等. 清远某电子垃圾拆解区河流底泥中重金属和多氯联苯的复合污染 [J]. 环境化学, 2015, 34(9): 1685-1693. doi: 10.7524/j.issn.0254-6108.2015.09.2015031604 LIN N N, SHAN Z H, ZHU C L, et al. Heavy metal and PCB contamination in river sediments of an E-waste recycling site in Qingyuan City [J]. Environmental Chemistry, 2015, 34(9): 1685-1693(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.09.2015031604
[15] WILLIAMS K E, LEMIEUX G A, HASSIS M E, et al. Quantitative proteomic analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals [J]. Proceedings of the National Academy of Sciences, 2016, 113(10): E1343-E1351. doi: 10.1073/pnas.1600645113 [16] 朱帅, 饶竹. 鱼肉样品中的手性多氯联苯对映体的分离测定研究 [J]. 分析测试学报, 2017, 36(6): 744-749. doi: 10.3969/j.issn.1004-4957.2017.06.007 ZHU S, RAO Z. Enantiomeric separation of chiral polychlorinated biphenyls in fish samples [J]. Journal of Instrumental Analysis, 2017, 36(6): 744-749(in Chinese). doi: 10.3969/j.issn.1004-4957.2017.06.007
[17] CHEN S J, TIAN M, ZHENG J, et al. Elevated levels of polychlorinated biphenyls in plants, air, and soils at an e-waste site in southern china and enantioselective biotransformation of chiral PCBs in plants [J]. Environmental Science & Technology, 2014, 48(7): 3847-3855. [18] 许宏宇. 典型手性多氯联苯(PCBs)分析方法及其在环境介质中的分布和对映体特征[D].济南: 山东大学, 2011. XU H Y. Enantioselective analysis of typical chiral PCBs and their distributions and Enantiomeric signatures in environmental medium[D]. Ji nan: Shandong University, 2011 (in Chinese).
[19] 杨彦, 王宗庆, 王琼, 等. 电子垃圾拆解场多环境介质多氯联苯(PCBs)污染特征及风险评估 [J]. 生态毒理学报, 2014, 9(1): 133-144. doi: 10.7524/AJE.1673-5897.20130701001 YANG Y, WANG Z Q, WANG Q, et al. Characteristics and environment risk assessment of PCBs in multi - media environment of the electronic waste dismantlingvenues [J]. Asian Journal of Ecotoxicology, 2014, 9(1): 133-144(in Chinese). doi: 10.7524/AJE.1673-5897.20130701001
[20] 李艳, 顾华, 楼春华, 等. 北京典型灌区土壤和农产品多氯联苯污染风险评估 [J]. 农业机械学报, 2018, 49(5): 313-322. doi: 10.6041/j.issn.1000-1298.2018.05.037 LI Y, GU H, LOU C H, et al. Assessment of contamination risk of PCBs in soils and agricultural products in typical irrigation district in beijing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 313-322(in Chinese). doi: 10.6041/j.issn.1000-1298.2018.05.037
[21] MOECKEL C, THOMAS G O, BARBER J L, et al. Uptake and storage of PCBs by plant cuticles [J]. Environmental Science & Technology, 2008, 42(1): 100-105.