-
随着工业化进程的推进,土壤重金属污染问题日益严重,对粮食生产安全、农业发展可持续性、土壤生态环境构成了严重威胁[1-2]. 镉、铅作为最常见的土壤重金属污染物,因具有生物毒性大,污染强度高的特点而备受研究者关注[3-4]. 重金属在土壤中隐蔽性强、不能被微生物降解,并可通过地下水、植物等媒介危及人类健康,因此采取措施对重金属污染土壤进行修复显得尤为必要. 对土壤重金属的化学钝化修复是指向土壤中加入钝化剂,以物理吸附、离子交换、氧化还原或与重金属形成络合物、螯合物、沉淀等作用方式使重金属转变为在土壤中不易溶出的形态,降低污染物的生物毒性和迁移性,从而达到安全修复污染土壤的目的[5-7]. 该法具有操作简便、修复迅速、投入小、效果好、不改变土壤条件等优点,在重金属污染土壤修复中有着较为广阔的应用前景[8].
传统的钝化材料主要有石灰类物质[9]、有机物料[10]、黏土矿物等[11],能够降低土壤溶液中的重金属离子的活性,但存在钝化效率低、对土壤扰动大等不足. 近些年来,纳米材料因具有大的比表面积、高的反应活性、强的吸附和螯合性能[12],已成为目前污染土壤修复研究的热点[13]. 有研究者将纳米羟基磷灰石、纳米二氧化钛、纳米黑炭等[14-16]应用于土壤污染治理,相关材料表现出极高的重金属钝化效率,但由于材料本身价格昂贵、稳定性差等缺点,限制了其在土壤修复中的应用. 因此,开发出一种钝化性能良好、经济环保的新型钝化材料具有极其重要的理论和现实意义.
纳米二氧化硅材料可以缓解土壤中重金属对植物的毒害,降低重金属的移动性[17-18],且成本低廉、无毒无污染,是极具应用潜力的钝化材料之一. 然而二氧化硅钝化重金属产物结合力较弱,在长期土壤环境中存在解吸的风险. 为了提高二氧化硅材料对重金属的吸附效率和结合力,人们用巯基、氨基硅烷偶联剂[19-20]等对其表面进行修饰,可以明显提升材料对重金属Cd、Pb的钝化效果. 但是二氧化硅粒径小、表面能高,极易发生微粒间的团聚,降低了可与重金属发生反应的有机修饰剂的利用率. 改善纳米微粒的聚集状态,构建多孔、大孔结构的纳米二氧化硅材料可以充分发挥表面钝化基团的作用,提升其对土壤污染物的钝化性能.
本文以硅酸钠为二氧化硅前驱体,分别制备表面带有氨基和环氧基团的纳米二氧化硅,同时采用含巯基的硅烷偶联剂对其表面修饰,通过氨基和环氧基的架桥作用来支撑纳米二氧化硅的部分二次堆积孔结构,阻止由于二氧化硅表面羟基发生缩聚而造成的颗粒团聚,研究了二次堆积孔结构对有效基团巯基与重金属结合效率的影响.
巯基功能化大孔二氧化硅的制备及其对土壤中二乙三胺五乙酸(DTPA)提取态Cd、Pb的钝化性能
Preparation of thiol groups modified macroporous structured nano-silica and its immobilization of Cd and Pb in contaminated soils
-
摘要: 以硅酸钠为前驱体,分别制备表面带有氨基和环氧基团的纳米二氧化硅,利用氨基和环氧基团的桥接反应构建具有大孔结构的纳米二氧化硅,进一步在其表面负载具有重金属反应性的巯基基团,最终得到一种具有重金属高效反应性的纳米材料,并将其用于对土壤重金属的钝化修复.红外光谱、透射电镜、比表面积等分析显示,氨基和环氧基有机基团的修饰降低了纳米二氧化硅颗粒之间的团聚,两种基团之间的架桥反应,构建了具有较大孔径的二氧化硅聚集结构.通过研究改性二氧化硅对污染土壤中DTPA提取态Cd、Pb的钝化作用,发现巯基修饰的大孔径纳米二氧化硅(SiO2-AE/SH)大幅提高了对重金属的钝化率;在添加比例为4%,修饰剂量为1.10 mmol·g−1时,SiO2-AE/SH对Cd的钝化效率是巯基修饰纳米二氧化硅(SiO2-SH)的1.28倍,对Pb的钝化效率是SiO2-SH的3.31倍.此研究为构建高效、大孔结构重金属钝化材料提供了一种方法,此材料也有望发展成为多孔硅过滤介质,应用于重金属废水处理.Abstract: Sodium silicate is used as the precursor to prepare nano-SiO2 with amine and epoxy groups on the surface. Two kinds of SiO2 are bridged through the reaction between amino and epoxy groups to build nano-SiO2 with macroporous structure. Thiol groups with heavy metal reactivity were further loaded on its surface to afford a type of highly reactive SiO2 nanomaterial for immobilization of heavy metals in soils. FTIR, TEM, and specific surface area analysis show that the modification of amino and epoxy organic groups reduces the agglomeration between nano-SiO2 particles, and the bridging reaction between amino and epoxy groups help construct a macroporous aggregated SiO2 structure. By studying the immobilization effect of modified SiO2 on the effective states of Cd and Pb in contaminated soils, the thiol-modified macroporous nano-SiO2 greatly can improve the immobilization rate of heavy metals. When the addition ratio is 4% and the modification dosage is 1.10 mmol·g−1, the immobilization efficiency of SiO2-AE/SH to cadmium ions and lead ions is 1.28 times and 3.31 times than that of SiO2-SH, respectively. This research provides a method for constructing high-efficiency, large-pore structure nanomaterials for heavy metal passivation, and this material is also expected to play roles in the treatment of heavy metal wastewater as porous silicon filter.
-
Key words:
- surface modification /
- nano-silica /
- contaminated soils /
- immobilization /
- cadmium/lead
-
表 1 改性纳米二氧化硅的表面性质
Table 1. Surface properties of modified nano-silica
改性二氧化硅Modified nano-silica 比表面积SBET/(m2·g−1) 平均孔径Daverage/nm SiO2 690.8 3.3 SiO2−SH 562.5 6.8 SiO2−AE/SH 376.9 10.6 -
[1] 龚海明, 马瑞峻, 汪昭军, 等. 农田土壤重金属污染监测技术发展趋势 [J]. 中国农学通报, 2013, 29(2): 140-147. doi: 10.3969/j.issn.1000-6850.2013.02.025 GONG H M, MA R J, WANG Z J, et al. Development of technologies for monitoring agricultural soil heavy metal pollution [J]. Chinese Agricultural Science Bulletin, 2013, 29(2): 140-147(in Chinese). doi: 10.3969/j.issn.1000-6850.2013.02.025
[2] 安婧, 宫晓双, 魏树和. 重金属污染土壤超积累植物修复关键技术的发展 [J]. 生态学杂志, 2015, 34(11): 3261-3270. AN J, GONG X S, WEI S H, et al. Research progress on technologies of phytoremediation of heavy metal contaminated soils [J]. Chinese Journal of Ecology, 2015, 34(11): 3261-3270(in Chinese).
[3] 胡雪芳, 田志清, 梁亮, 等. 不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析 [J]. 环境科学, 2018, 39(7): 3409-3417. HU X F, TIAN Z Q, LIANG L, et al. Comparative analysis of different soil amendment treatments on rice heavy metal accumulation and yield effect in Pb and Cd contaminated farmland [J]. Environmental Science, 2018, 39(7): 3409-3417(in Chinese).
[4] XU C, CHEN H X, XIANG Q, et al. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil–rice (Oryza sativa L. ) system [J]. Environmental Science and Pollution Research, 2017, 25(2): 1147-1156. [5] KOMAREK M, VANEK A, ETTLER V. Chemical stabilization of metals and arsenic in contaminated soils using oxides - a review [J]. Environmental Pollution, 2013, 172: 9-22. doi: 10.1016/j.envpol.2012.07.045 [6] 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展 [J]. 环境工程学报, 2011, 5(7): 1141-1453. CAO X D, WEI X X, DAI G L, et al. Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils: a review [J]. Chinese Journal of Environmental Engineering, 2011, 5(7): 1141-1453(in Chinese).
[7] 邹雪艳, 李小红, 赵彦保, 等. 化学钝化法修复重金属污染土壤研究进展 [J]. 化学研究, 2018, 29(6): 14-23. ZOU X Y, LI X H, ZHAO Y B, et al. Research progress for chemical immobilization in heavy metal contaminated soils [J]. Chemical Research, 2018, 29(6): 14-23(in Chinese).
[8] 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展 [J]. 生态环境学报, 2014, 23(4): 721-728. doi: 10.3969/j.issn.1674-5906.2014.04.029 LI J R, XU Y M, LIN D S, et al. In situ immobilization remediation of heavy metals in contaminated soils: A review [J]. Ecology and Environmental Sciences, 2014, 23(4): 721-728(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.04.029
[9] GARAU G, CASTALDI P, SANTONA L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil [J]. Geoderma, 2007, 142(1/2): 47-57. [10] JIANG J P, YUAN X B, YE L L, et al. Characteristics of straw biochar and its influence on the forms of arsenic in heavy metal polluted soil [J]. Applied Mechanics and Materials, 2013, 409/410: 133-138. doi: 10.4028/www.scientific.net/AMM.409-410.133 [11] LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite [J]. Geoderma, 2014, 235/236(4): 9-18. [12] 王萌, 陈世宝, 李娜, 等. 纳米材料在污染土壤修复及污水净化中应用前景探讨 [J]. 中国生态农业学报, 2013, 29(2): 140-147. WANG M, CHEN S B, LI N, et al. Development of technologies for monitoring agricultural soil heavy metal pollution [J]. Chinese Agricultural Science Bulletin, 2013, 29(2): 140-147(in Chinese).
[13] 刘蕊, 周启星, 马奇英. 纳米材料在污染水体和土壤修复中的应用 [J]. 生态学杂志, 2010, 29(9): 1852-1859. LIU R, ZHOU Q X, MA Q Y, et al. Applications of nanomaterials in remediation of contaminated water and soil: A review [J]. Chinese Journal of Ecology, 2010, 29(9): 1852-1859(in Chinese).
[14] JIN Y, LIU W, LI X L, et al. Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil [J]. Ecological Engineering, 2016, 95: 25-29. doi: 10.1016/j.ecoleng.2016.06.071 [15] 丁园, 刘燕红, 郝双龙, 等. 化学改良剂对红壤中铜、镉吸附行为的影响 [J]. 江西农业大学学报, 2010, 32(4): 824-828. doi: 10.3969/j.issn.1000-2286.2010.04.035 DING Y, LIU Y H, HAO S L, et al. Effect of adjustments on Cu and Cd sorption in red soil [J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(4): 824-828(in Chinese). doi: 10.3969/j.issn.1000-2286.2010.04.035
[16] CHENS J M, LIU Y Z, WANG H W. Effects of surface-modified nano-scale carbon black on Cu and Zn fractionations in contaminated soil [J]. International Journal of Phytoremediation, 2014, 16(1): 86-94. doi: 10.1080/15226514.2012.759530 [17] RIZWAN M, MEUNIER J D, MICHE H, et al. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W. ) grown in a soil with aged contamination [J]. Journal of Hazardous Materials, 2012, 209/210: 326-334. doi: 10.1016/j.jhazmat.2012.01.033 [18] 宁东峰. 土壤重金属原位钝化修复技术研究进展 [J]. 中国农学通报, 2016, 32(23): 72-80. doi: 10.11924/j.issn.1000-6850.casb16010119 NING D F. A review of in situ passivation repairing technology of heavy metals in soil [J]. Chinese Agricultural Science Bulletin, 2016, 32(23): 72-80(in Chinese). doi: 10.11924/j.issn.1000-6850.casb16010119
[19] BAO S Y, LI K, NING P, et al. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms [J]. Applied Surface Science, 2017, 393: 457-466. doi: 10.1016/j.apsusc.2016.09.098 [20] 任小明, 赵辉, 朱妍娇, 等. 纳米二氧化硅粒子的改性研究 [J]. 湖北大学学报∶自然科学版, 2016, 38(6): 522-526. REN X M, ZHAO H, ZHU Y J, et al. Modification of nano silicon dioxide particles [J]. Journal of Hubei University (Natural Science), 2016, 38(6): 522-526(in Chinese).
[21] 王帝伟, 刘祎丹, 易春辉, 等. 改性纳米二氧化硅对Cd污染农田土壤的钝化修复 [J]. 环境化学, 2019, 38(5): 1106-1112. WANG D W, LIU Y D, YI C H, et al. Stabilization of Cd-contaminated agricultural soils by modified nano-silica [J]. Environmental Chemistry, 2019, 38(5): 1106-1112(in Chinese).
[22] CAO P L, QIU K Y, ZOU X Y, et al. Mercapto propyltrimethoxysilane- and ferrous sulfate-modified nano-silica for immobilization of lead and cadmium as well as arsenic in heavy metal-contaminated soil [J]. Environmental Pollution, 2020, 266(Pt 3):115152. DOI: 10.1016/j.envpol.2020.115152. [23] LIAN M M, FENG Q Q, WANG L F, et al. Highly effective immobilization of Pb and Cd in severely contaminated soils by environment-compatible, mercapto-functionalized reactive nanosilica [J]. Journal of Cleaner Production, 2019, 235: 583-589. doi: 10.1016/j.jclepro.2019.07.015 [24] KOSAK A, BAUMAN M, PADEZNIK GOMILSEK J, et al. Lead (II) complexation with 3-mercaptopropyl- groups in the surface layer of silica nanoparticles: sorption, kinetics and EXAFS/XANES study [J]. Journal of Molecular Liquids, 2017, 229: 371-379. doi: 10.1016/j.molliq.2016.11.115