-
近年来婴儿性早熟、雄鱼雌化病案频发,内分泌干扰物(EDCs)已成为全球广泛关注的一类重要的新兴污染物[1]。双酚A(BPA)作为一种典型的EDCs被广泛用于制造塑料制品[2],并且自2000年以来其消费量增长了10倍,达到每年300万吨,用存量每年人均增加0.8 kg[3]。由于塑料制品高温下的析出和工业废水的排放等原因导致BPA在环境中被不断检出[4]。有研究表明,我国沿海地区的32个取样点中均检测到BPA,冬季、夏季平均浓度分别为449.2、186.3 ng·L−1,由其引发的生态风险占总风险系数的71%以上[5]。由于传统的污水处理工艺对BPA的去除效果有限,尾水中残留的BPA易通过食物网和环境介质再次进入人和动物体内,可引发内分泌紊乱、生殖障碍、幼体变异等病变[6],寻求高效深度处理技术对人类的健康生存有着重大的意义。
近年来,高级氧化法(AOPs)凭借其反应速度快、降解能力强、对污染物没有选择性等独特优势脱颖而出[7],其中过硫酸盐氧化技术得到了广泛关注和研究。过硫酸盐(PDS, S2O82−)在热、碱、过渡金属、紫外光等外界能量的激活下,可以产生高氧化还原电位(2.4—3.1 V)[8] 和较长半衰期(4 s)的硫酸根自由基(
${\rm{SO}}_4^{-}\cdot $ )[9],对难降解有机物有很好的去除效果。在各类活化方式中,Fe2+/S2O82−体系无毒、低能耗、高效,受到了广泛关注[10]。相比于其它传统的AOP技术(如芬顿、光催化等),Fe2+/S2O82−的优势还体现在其在地下水和土壤原位化学修复(ISCO)领域具有更广阔应用前景[11-14]。过硫酸盐较过氧化氢稳定性更好,更适于场地修复过程试剂的运送及储存,且Fe2+/S2O82−体系无需额外能量投入,对水质透光性也无特殊要求。Dong等[15]研究发现,Fe2+/S2O82−体系对碘仿有较好的去除效果,当Fe2+/PDS的物质的量比为1∶5、PDS初始浓度为15 μmol·L−1、pH值为3.0,碘仿去除率最佳可达83%;Ren等[16]考察了Fe2+/PDS体系中pH值、水中无机阴离子等因素对磺胺嘧啶降解效率的影响,发现去除率高达到90%,${\rm{SO}}_4^{-}\cdot $ 为主要活性物质。目前,利用Fe2+/S2O82−体系来降解BPA鲜有报道,尤其是围绕Fe2+/S2O82−体系中关键性影响因素,如溶解氧、投加比及优化策略等方面的研究比较有限。本文拟采用Fe2+/S2O82−技术降解BPA,通过单因素变量法考察了Fe2+和PDS投加剂量及比例对BPA降解效率及动力学的影响;探讨了初始pH对体系效率的影响机制;分析了Fe2+的投加方式和PDS的投加方式对BPA降解动力学的影响及潜在的优化方式;确定了Fe2+/PDS体系对BPA降解起主要作用的活性物质;分析了BPA在体系中的矿化效率和降解路径。
Fe2+/S2O82-体系对双酚A的降解性能及优化
The performance and optimization of Fe2+/S2O82- process for bisphenol A degradation
-
摘要: 研究了Fe2+活化过硫酸盐(PDS, S2O82-)高级氧化技术对水中内分泌干扰物双酚A(BPA)的降解性能及优化方式,考察了Fe2+剂量、PDS剂量、初始pH、Fe2+和PDS投加方式对BPA降解的影响,确定了Fe2+/PDS体系中起主要作用的活性物质,分析了BPA的降解路径。结果表明,Fe2+剂量的增加对BPA的降解呈现先促进后抑制的作用,当Fe2+与PDS物质的量比为1∶1时BPA去除效果最好;BPA去除率随着PDS浓度的增加而增加。初始pH值为2.5—8.5时,BPA在酸性条件下能有效降解,且在pH = 2.95时降解率最高,主要原因是Fe2+与OH–的络合及溶解氧在中性及碱性条件下加速了二价铁的氧化。通过研究Fe2+和PDS分批投加对BPA降解的影响发现,均分两次投加Fe2+时适当延迟Fe2+的二次投加时间可促进BPA的降解,少量多次投加Fe2+可以显著提高自由基的利用率,而改变PDS的投加方式对BPA降解影响不大。通过分析甲醇及叔丁醇对BPA降解的抑制作用,结合电子自旋共振(ESR)确定体系中主要活性物质是硫酸根自由基和羟基自由基。利用液质联用技术对BPA的初期降解产物进行分析发现,BPA的降解主要为自由基攻击苯环和攻击异丙基和苯环连接的C—C键两种路径。Abstract: The advanced oxidation technology of persulfate (PDS) activation by Fe2+ for the degradation of endocrine disruptor bisphenol A (BPA) in water was investigated in this study. The effects of Fe2+ dosage, PDS dosage, initial pH, the modes of dosing Fe2+ or PDS on BPA degradation were examined systematically. The degradation pathways of BPA in Fe2+/PDS process was also examined. The reactive oxygen species (ROS) in Fe2+/PDS system were analyzed. Results showed that the increase of Fe2+ dosage could promote BPA degradation but overhigh concentration of Fe2+ could inhibit BPA degradation, and the best molar ratio of Fe2+ to PDS was found to be 1∶1. The removal rate of BPA increased with the increase of PDS dosage. When the initial pH was between 2.5—8.5, BPA could be degraded efficiently at acidic conditions than that at neutral or alkaline conditions, and the degradation rate was the highest at pH=2.95. The adverse effects of neutral or alkaline conditions were found mainly due to the enhanced oxidation of Fe2+ by dissolved oxygen. By evaluating the dosing modes of both Fe2+ and PDS, it was found that, when adding Fe2+ in two batches, moderate delay of Fe2+ addition was beneficial to the degradation of BPA. Adding Fe2+ in multiple batches could significantly improve the utilization of ROS. However, altering the dosing modes of PDS hardly had any effect on BPA degradation. Based on quenching experiments using methanol and tert-butanol and electron spin resonance (ESR) analysis, the main active substances were determined as sulfate radicals and hydroxyl radicals. Based on the analysis of primary degradation intermediates of BPA using LCMS, both hydroxylation of the benzene ring and attack on the connecting carbon were found to be the main reaction pathways.
-
Key words:
- bisphenol A /
- ferrous ion /
- persulfate /
- sulfate radical /
- advanced oxidation
-
图 4 (a)二次均分投加总量为0.5 mmol·L−1的Fe2+对BPA降解的影响;(b)多次均分投加总量为0.5 mmol·L−1的Fe2+对BPA降解的影响([BPA]0 = 0.02 mmol·L−1, [PDS]0 = 0.5 mmol·L−1, pH0 = 3.0)
Figure 4. (a) Effect of dosing 0.5 mmol·L−1 Fe2+ in two splits on the degradation of BPA;(b) Effect of dosing 0.5 mmol·L−1 Fe2+ in multiple splits on the degradation of BPA
图 5 (a)二次均分投加总量为0.5 mmol·L-1的PDS对BPA降解的影响;(b)多次均分投加总量为0.5 mmol·L-1的PDS对BPA降解的影响([BPA]0 = 0.02 mmol·L-1, [Fe2+]0 = 0.5 mmol·L-1, pH0 = 3.0)
Figure 5. (a) Effect of dosing 0.5 mmol·L-1 PDS in two splits on the degradation of BPA;(b) Effect of dosing 0.5 mmol·L-1 PDS in multiple splits on the degradation of BPA
-
[1] WANG R, MA X, LIU T, et al. Degradation aspects of endocrine disrupting chemicals: A review on photocatalytic processes and photocatalysts [J]. Applied Catalysis a-General, 2020, 597: 117547. doi: 10.1016/j.apcata.2020.117547 [2] 宋作栋, 仇雁翎, 张华, 等. 水体中双酚类物质的赋存现状及研究进展 [J]. 环境化学, 2020, 39(6): 1496-1503. doi: 10.7524/j.issn.0254-6108.2019081413 SONG Z D, QIU Y L, ZHANG H, et al. The occurrence and research progress of bisphenol analogues in aquatic environment [J]. Environmental Chemistry, 2020, 39(6): 1496-1503(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081413
[3] JIANG D, CHEN W Q, ZENG X, et al. Dynamic stocks and flows analysis of Bisphenol A (BPA) in China: 2000—2014 [J]. Environmental Science & Technology, 2018, 52(6): 3706-3715. [4] 赵荧, 李媛, 陈永柏. 双酚A和酞酸酯对鱼类内分泌干扰效应及繁殖毒性研究 [J]. 水生态学杂志, 2017, 38(6): 1-10. ZHAO Y, LI Y, CHEN Y Y. Research progress of endocrine-disrupting effects and reproductive toxicity of Bisphenol A and phthalic acid esters on fish [J]. Journal of Water Ecology, 2017, 38(6): 1-10(in Chinese).
[5] LU J, ZHANG C, WU J, et al. Seasonal distribution, risks, and sources of endocrine disrupting chemicals in coastal waters: Will these emerging contaminants pose potential risks in marine environment at continental-scale? [J]. Chemosphere, 2020, 247: 125907. doi: 10.1016/j.chemosphere.2020.125907 [6] 熊美昱, 夏雨琪, 彭程. 典型类雌激素的降解方法及其影响因素研究进展 [J]. 环境化学, 2020, 39(3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303 XIONG M Y, XIA Y Q, PENG C. Degradation methods and factors of typical estrogen like substances [J]. Environmental Chemistry, 2020, 39(3): 610-623(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101303
[7] HU L, WANG P, SHEN T. The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: A review [J]. Science of the Total Environment, 2020, 722: 137831. doi: 10.1016/j.scitotenv.2020.137831 [8] HOU X, ZHANG G, HUANG X, et al. Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation [J]. Chemical Engineering Journal, 2020: 382;122355. [9] 邓靖, 冯善方, 马晓雁, 等. 均相活化过硫酸氢盐高级氧化技术研究进展[J]. 水处理技术, 2015, 41(4): 13-19. DENG J, FENG S F, MA X Y, et al. Reach development in advanced oxidation processes based on homogeneous activation of peroxymonosulfate[J]. Water Treatment Technology, 2015, 41(4): 13-19(in Chinese).
[10] 王鸿斌, 王群, 刘义青, 等. 亚铁活化过硫酸盐降解水中双氯芬酸钠 [J]. 环境化学, 2020, 39(4): 869-875. doi: 10.7524/j.issn.0254-6108.2019040806 WANG H B, WANG Q, LIU Y Q, et al. Degradation of diclofenac by ferrous activated persulfate [J]. Environmental Chemistry, 2020, 39(4): 869-875(in Chinese). doi: 10.7524/j.issn.0254-6108.2019040806
[11] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. doi: 10.1080/10643380802039303 [12] 吴昊, 孙丽娜, 王辉, 等. 活化过硫酸钠原位修复石油类污染土壤研究进展 [J]. 环境化学, 2015, 34(11): 2085-2095. WU H, SUN L N, WANG H, et al. Persulfate In-situ remediation of petroleum hydrocarbon contaminated soil [J]. Environmental Chemistry, 2015, 34(11): 2085-2095(in Chinese).
[13] 张易旻, 陈铮铮, 陈昆柏, 等. 氯代有机物污染土壤高级化学氧化修复技术研究进展 [J]. 环境化学, 2019, 38(3): 480-493. doi: 10.7524/j.issn.0254-6108.2018050203 ZHANG Y M, CHEN Z Z, CHEN K B, et al. Remediation of chlorohydrocarbon contaminated soil by advanced oxidation technologies: A review [J]. Environmental Chemistry, 2019, 38(3): 480-493(in Chinese). doi: 10.7524/j.issn.0254-6108.2018050203
[14] 谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用 [J]. 环境化学, 2018, 37(11): 2489-2508. doi: 10.7524/j.issn.0254-6108.2018012102 GU D M, GUO C S, FENG Q Y, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation [J]. Environmental Chemistry, 2018, 37(11): 2489-2508(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012102
[15] DONG Z J, WANG F, SONG X L, et al. Fe (II)-activated persulfate oxidation effectively degrades iodoform in water: Influential factors and kinetics analysis [J]. Arabian Journal of Chemistry, 2020, 13(4): 5009-5017. doi: 10.1016/j.arabjc.2020.01.023 [16] REN H Y, ZHANG H M, JIA Q Z, et al. Oxidation of sulfamerazine with Fe2+/Persulfate system: Effects of inorganic anions and degradation mechanism based on independent reaction [J]. Fresenius Environmental Bulletin, 2020, 29(2): 1096-1103. [17] WANG S, WU J, LU X, et al. Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation pathways [J]. Chemical Engineering Journal, 2019, 358: 1091-1100. doi: 10.1016/j.cej.2018.09.145 [18] TAN C, GAO N, CHU W, et al. Degradation of diuron by persulfate activated with ferrous ion [J]. Separation and Purification Technology, 2012, 95: 44-48. doi: 10.1016/j.seppur.2012.04.012 [19] RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(II)-activated persulfate process [J]. Journal of Hazardous Materials, 2014, 268: 23-32. doi: 10.1016/j.jhazmat.2014.01.010 [20] 贾之慎. 无机分析化学[M]. 2版. 杭州: 高等教育出版社, 2015: 409. JIA Z S. Inorganic and Analytical Chemistry[M]. Second Edition. Hangzhou: Higher Education Press, 2015: 409(in Chinese).
[21] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (OH/O) in aqueous-solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [22] TAN C, DONG Y, SHI L, et al. Degradation of orange II in ferrous activated peroxymonosulfate system: Efficiency, situ EPR spin trapping and degradation pathway study [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83: 74-81. doi: 10.1016/j.jtice.2017.11.014 [23] CHU W, CHAN K H, KWAN C Y, et al. Degradation of atrazine by modified stepwise-Fenton's processes [J]. Chemosphere, 2007, 67(4): 755-761. doi: 10.1016/j.chemosphere.2006.10.039 [24] LI Y, BAGHI R, FILIP J, et al. Activation of peroxydisulfate by ferrite materials for phenol degradation [J]. Acs Sustainable Chemistry & Engineering, 2019, 7(9): 8099-8108. [25] YAN S, SHI Y, TAO Y, et al. Enhanced persulfate-mediated photocatalytic oxidation of bisphenol A using bioelectricity and a g-C3N4/Fe2O3 heterojunction [J]. Chemical Engineering Journal, 2019, 359: 933-943. doi: 10.1016/j.cej.2018.11.093 [26] XU L J, CHU W, LEE P H, et al. The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis [J]. Journal of Hazardous Materials, 2016, 308: 386-393. doi: 10.1016/j.jhazmat.2016.01.075 [27] XU L J, CHU W, GRAHAM N. A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process [J]. Ultrasonics Sonochemistry, 2013, 20(3): 892-899. doi: 10.1016/j.ultsonch.2012.11.005 [28] SHARMA J, MISHRA I M, DIONYSIOU D D, et al. Oxidative removal of bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway [J]. Chemical Engineering Journal, 2015, 276: 193-204. doi: 10.1016/j.cej.2015.04.021 [29] DU J, BAO J, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A [J]. Journal of Hazardous Materials, 2016, 320: 150-159. doi: 10.1016/j.jhazmat.2016.08.021