-
抗生素自被发现以来,就已被广泛应用于各行业中。抗生素是一种在较低浓度就能抑制影响其他生物机能的化学物质,拥有良好的治疗效果和促进生物生长的能力[1]。抗生素的出现帮助人类解决了许多人体和动植物病害等方面的问题,在各领域特别是动物饲料及医药品的生产中发挥了巨大的作用[2]。随着科技的发展,抗生素越来越难以从人类社会中剥离出来。但通常情况下,人和动物对抗生素的消化吸收能力很差,进入人或动物体内的抗生素中超过60%会通过粪便和尿液被排放到环境中[3]。此外,大量来源于医院、农场、养殖场和工厂等地的抗生素也会经过雨水和污水排放而流入水环境中[4],而进入环境介质的中的抗生素由于其复杂的结构和较强的抑制杀菌能力导致其难以被生物降解。这些流入环境中的抗生素可能会诱导耐药菌株的生成,而若致病菌或条件致病菌从中获得了抗药因子,则将对生态环境与社会安全产生严重的潜在威胁[5]。早在2015年,中国患者的抗生素使用率就已超过80%[6],远高于同年的欧美国家,而全球各地也早已出现了关于水体抗生素污染问题的报道[7-8],其中中国的抗生素污染问题则较为突出,如对上海黄浦江的调查中发现了高浓度的磺胺类以及四环素类抗生素[9],而2014年京杭大运河则被检出其抗生素浓度超过自然水体的10000倍[10]。随着抗生素对水环境造成的威胁不断扩大,越来越多的研究者开始聚焦于水环境中抗生素污染的修复和去除工作[11]。
目前常用于去除水体中抗生素的方法主要包括吸附、光化学降解、微生物降解、超声降解、膜处理工艺、人工湿地等,部分方法存在成本高、稳定性差、工艺复杂等问题[11-12]。吸附作为一种常用有效且成本低廉的技术,常被应用于水体中抗生素的去除[13],而生物炭相较于活性炭、碳纳米管、黏土矿物、离子交换树脂等其他几种常用吸附剂,拥有成本低廉、制备简单、原材料来源广泛和环境友好等优点[14]。生物炭是一种在限氧或无氧环境下高温热解生物质产生的一种芳香程度高且具有多孔径结构和大量表面活性官能团的富碳固体物质[15]。研究表明部分生物炭对水体中特定的抗生素具有一定的吸附去除效果[7,16],但由于生物炭本身带负电,很多情况下对抗生素吸附能力表现并不佳,而通过在制备过程中或之后对生物炭表面进行修饰或者使用化学试剂处理可以定向改变其部分理化性质,这种改性通常可显著提高生物炭对目标污染物的吸附能力[17],因此对生物炭进行改性已成为当下生物炭研究领域的必然趋势[18]。
目前改性生物炭已广泛运用于许多水体污染物的去除研究,例如重金属、营养物质及有机污染物[19-20]。目前,对生物炭比较常用的改性方法可以大致分为化学、物理以及生物改性方法,其中化学方法是较常用的改性方法[21]。现如今对生物炭进行改性的方法繁多,同时用于吸附的抗生素种类不同也会造成吸附效果和机理出现较大的差异。目前虽出现了很多关于改性生物炭对水体中抗生素的吸附研究报道,但部分研究中对抗生素吸附机理方面的解释还不够清晰。同时,由于生物炭理化性质受生物质类型和碳化条件的影响较大,不同生物炭对不同污染物的吸附效果及过程也不同。因此有必要对现有的研究进行归纳总结。本文对改性生物炭的制备及其理化性质表征、吸附污染物的影响因素以及对水体抗生素的吸附机理和吸附效果等方面进行综述。
改性生物炭对水体中抗生素的去除研究进展
Research progress on the removal of antibiotics in water by modified biochar
-
摘要: 随着社会经济的不断发展,抗生素造成的水体环境污染问题已不容忽视。利用生物炭去除水体中的抗生素是解决这一问题的有效手段之一。然而,原始生物炭对水体中抗生素等有机污染物的去除存在一定局限性,因此对生物炭进行改性以提升其吸附能力尤为必要。生物炭的吸附性能受生物质类型、碳化条件和改性方法等因素影响较大,导致目前虽然开展了许多相关研究,但结论不一,尤其是在不同改性生物炭对不同抗生素吸附机理的解释方面还不是很清楚,因此有必要对现有研究进行系统地归纳和总结。本文首先对用于抗生素吸附的改性生物炭制备方法及理化性质表征方法进行了介绍,综述了改性生物炭对不同种类抗生素(磺胺类、喹诺酮类、四环素类、大环内酯类、氯霉素类)的吸附效果、吸附机理及其影响因素(如溶液pH值、热解温度、改性材料等),对比分析了生物炭改性前后吸附效果的差异,对目前改性生物炭用于去除水体中抗生素存在的问题进行了分析和总结,在此基础上,对今后该领域的研究和发展方向进行了展望,以期为将来开展相关的研究工作提供一定的参考。Abstract: With the constant development of the social economy, the water pollution caused by antibiotics have already become serious. Removing antibiotics from water through the biochar is an effective solution to the problem. However, there are some limitations about the removal of antibiotics and other organic pollutants by the pristine biochar, so it is necessary to modify the biochar so as to improve its adsorption capacity. The adsorption capacity of the biochar is greatly related to biomass types, carbonization conditions and modification methods. As a result, although a lot of related research have been carried out, there are different conclusions, especially the obscure explanation of the adsorption mechanisms on various antibiotics by different modified biochar. Therefore, it is necessary to systematically summarize the current research results. Firstly, the preparation and physicochemical characterization methods of the modified biochar for antibiotic adsorption are introduced. The adsorption effects, adsorption mechanisms and influencing factors (such as solution pH value, pyrolysis temperature and modified material) of different kinds of antibiotics (sulfonamides, quinolones, tetracyclines, macrolides and chloramphenicols) are reviewed. The difference of the adsorption effect before and after biochar modification is analyzed and summarized. On this basis, suggestions and future perspectives are proposed, providing a reference for future research.
-
Key words:
- modified biochar /
- antibiotic /
- adsorption mechanism /
- wastewater treatment
-
表 1 改性(未改性)生物炭表征及对典型抗生素的吸附能力
Table 1. Characterization of modified (unmodified) biochar and its adsorption capacity for typical antibiotics
生物质
Biomass改性方法及试剂
Methods and reagents of
modification抗生素类型
Types of
antibiotics最大吸
附量/
(mg·g−1)
Maximum
adsorption
capacity热解温度/℃
Pyrolysis
temperature溶液pH 比表面积/
(m2·g−1)
Specific
surface
area平均
孔径/nm
Average
pore size来源
文献
Reference马铃薯茎叶 原生物炭与H2SO4溶液混合,
酸改性磺胺噻唑 7.69
(3.20)500 5.30 92.85(99.43) 2.79
(3.12)[17] 芦苇秸秆 原生物体与磷酸溶液浸渍并负载TiO2制得复合材料 磺胺嘧啶 5.50
(—)500 6.46 — — [70] 农产品 原生物炭与KMnO4混合 磺胺甲恶唑 — — 5.00 86.30(114.10) — [55] 松木屑 原生物炭与Fecl2混合,磁改性 磺胺甲恶唑 13.83
(17.49)650 4.00 125.80(297.80) 9.60
(3.67)[58] 竹子 使用球磨技术处理原生物炭 磺胺吡啶 57.90
(—)450 6.00 — — [71] 黄芪草药 原生物炭与Fe2+/Fe3+溶液混合,
磁改性环丙沙星 68.90
(—)700 6.00 203.70(4.40) — [43] 马铃薯茎叶 磁改性生物炭与KMnO4混合,磁性生物炭基锰氧化物的复合物 环丙沙星 8.37
(5.58)500 3.00 252.00(99.43) 2.56
(3.12)[45] 樟树叶 原生物炭负载纳米氧化锌与Fe盐溶液混合改性 环丙沙星 449.40
(—)650 4.00 915.00(19.00) — [61] 酒糟 原生物炭与氯化铁、硫酸锰溶液混合改性 左氧氟沙星 181.00
(—)800 5.00 93.40(—) — [72] 马铃薯茎叶 磁改性生物炭与KMnO4混合,磁性生物炭基锰氧化物的复合物 诺氟沙星 6.94
(5.78)500 3.00 252.00(99.43) 2.56
(3.12)[45] 松木屑 原生物炭与磷酸溶液浸渍后再次
热解诺氟沙星 337.60
(1.96)350 5.57 1148.32(9.15) 2.18(12.41) [34] 马铃薯茎叶 磁改性生物炭与KMnO4混合,磁性生物炭基锰氧化物的复合物 恩诺沙星 7.19
(4.49)500 3.00 252.00(99.43) 2.56
(3.12)[45] 玉米秸秆 原生物炭与磷酸溶液混合改性 恩诺沙星 41.91
(38.07)500 5.00 14.17(3.01) 0.73
(1.29)[50] 玉米秸秆 原生物炭与KOH溶液混合改性 恩诺沙星 58.29
(38.07)500 5.00 22.69(3.01) 0.64
(1.29)[50] 鸡骨 原生物炭与Fe2+/Fe3+溶液混合,
磁改性四环素 98.89
(9.83*)500 8.00 328.06(316.05) — [73] 玉米秸秆 生物炭原材料与NaHCO3、三聚氰胺混合后热解 四环素 347.00
(9.83*)800 4.00—7.00
(3.00—9.00*)1401.00
(356.28*)3.46(2.62*) [21,52] 稻壳 生物炭原材料与甲醇溶液混合改性 四环素 18.53
(10.25)383—412 2.00 65.97(51.86) — [64] 杨木 原生物炭与KOH溶液混合改性 四环素 21.17
(4.30)300 5.00 1.61(—) — [30] 猪粪 原生物炭与磷酸溶液混合改性 四环素 160.30
(—)700 9.00 319.04(227.56) — [63] 稻草 原生物炭与磷酸溶液混合改性 四环素 167.50
(—)700 9.00 372.21(369.26) — [63] 污泥 与壳聚糖与Fe/S混合制备复合改性吸附材料 四环素 183.01
(51.78)500 5.00 — — [74] 竹子 负载Fe/Cu的乙醇改性生物炭复合材料 氯霉素 5.20
(0.077)450 5.00 — — [68] 棕榈 原生物炭与针铁矿混合改性 泰乐菌素 — 600 9.00 230.50(120.50) 38.00(38.00) [59] 注:“()”内为未改性生物炭的相关数据;“ — ”表示原文未提及;“ * ”表示该数据出自不同文献
Note: “()” means the corresponding data of unmodified biochar; “ — ”means there is no record in the original documents"; “ * ” means the data comes from different documents. -
[1] ZHANG J S, WANG S. Trace for the motivations of the coalminers' off-site behaviors based on the evolutionary game theory [J]. Journal of Safety & Environment, 2018, 18(2): 657-663. [2] TANG Y Q, YE Q, ZHENG W Y. Research status and development of antibiotics [J]. World Notes on Antibiotics, 2019, 40(4): 295-300. [3] ZHANG H Q, JIA Y Y, KHANAL S K, et al. Understanding the role of extracellular polymeric substances on ciprofloxacin adsorption in aerobic sludge, anaerobic sludge, and sulfate-reducing bacteria sludge systems [J]. Environmental Science & Technology, 2018, 52(11): 6476-6486. [4] LIEN L T, LAN P T, CHUC N T, et al. Antibiotic resistance and antibiotic resistance genes in escherichia coli Isolates from hospital wastewater in vietnam [J]. International Journal of Environmental Research and Public Health, 2017, 14(7): 699-710. doi: 10.3390/ijerph14070699 [5] CHAUDHARY A S. A review of global initiatives to fight antibiotic resistance and recent antibiotics׳ discovery [J]. Acta Pharmaceutica Sinica B, 2016, 6(6): 552-556. doi: 10.1016/j.apsb.2016.06.004 [6] 胡譞予. 水环境中抗生素对健康的危害 [J]. 食品与药品, 2015, 17(3): 215-219. doi: 10.3969/j.issn.1672-979X.2015.03.022 HU X Y. Harm of antibiotics in aquatic environment on health [J]. Food and Drug, 2015, 17(3): 215-219(in Chinese). doi: 10.3969/j.issn.1672-979X.2015.03.022
[7] AHMED M B, ZHOU J L, NGO H H, et al. Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application [J]. Science of the Total Environment, 2017, 609: 885-895. doi: 10.1016/j.scitotenv.2017.07.239 [8] WALIA S K, MURLEEDHARN C, BAND J, et al. Quantitation of antibiotic resistance genes pollution in hospital waste water effluent and Urban Clinton River Water, Michigan, USA [J]. Current Medicine Research and Practice, 2016, 6(4): 149-151. doi: 10.1016/j.cmrp.2016.07.005 [9] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展 [J]. 环境化学, 2014, 33(7): 1075-1083. doi: 10.7524/j.issn.0254-6108.2014.07.001 ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts [J]. Environmental Chemistry, 2014, 33(7): 1075-1083(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.07.001
[10] 曾冠军, 柳娴, 马满英. 水体中抗生素污染研究进展 [J]. 安徽农业科学, 2017, 45(3): 72-74. doi: 10.3969/j.issn.0517-6611.2017.03.025 ZENG G J, LIU X, MA M Y. Research progress of antibiotic pollution in water [J]. Journal of Anhui Agr, 2017, 45(3): 72-74(in Chinese). doi: 10.3969/j.issn.0517-6611.2017.03.025
[11] 耿冲冲, 王亚军. 污水中抗生素生化去除研究进展 [J]. 环境监测管理与技术, 2019, 31(3): 12-16. doi: 10.3969/j.issn.1006-2009.2019.03.004 GENG C C, WANG Y J. Research progress of biochemical treatment on antibiotics removal from wastewater [J]. The Administration and Technique of Environmental Monitoring, 2019, 31(3): 12-16(in Chinese). doi: 10.3969/j.issn.1006-2009.2019.03.004
[12] AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges [J]. Science of the Total Environment, 2015, 532: 112-126. doi: 10.1016/j.scitotenv.2015.05.130 [13] 程宪伟, 梁银秀, 于翔霏, 等. 水体中抗生素污染及其处理技术研究进展 [J]. 环境科学与技术, 2017, 40(s1): 125-132. CHENG X W, LIANG Y X, YU X F, et al. The contamination and treatment technologies for antibiotics in water: a review [J]. Environmental Science & Technology, 2017, 40(s1): 125-132(in Chinese).
[14] LI X N, SONG Y, JIA M Y, et al. A review of researches on biochar adsorbing organic contaminants and its mechanism [J]. Acta Pedologica Sinica, 2017, 54: 1313-1325. [15] ALLER M F. Biochar properties: Transport, fate, and impact [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(14/15): 1183-1296. [16] SUN B B, LIAN F, BAO Q L, et al. Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole [J]. Environmental Pollution, 2016, 214: 142-148. doi: 10.1016/j.envpol.2016.04.017 [17] 李蕊宁, 王兆炜, 郭家磊, 等. 酸碱改性生物炭对水中磺胺噻唑的吸附性能研究 [J]. 环境科学学报, 2017, 37(11): 4119-4128. LI R N, WANG Z W, GUO J L, et al. Adsorption characteristics of sulfathiazole in aqueous solution by acid /alkali modified biochars [J]. Acta Scientiae Circumstantiae, 2017, 37(11): 4119-4128(in Chinese).
[18] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater [J]. Bioresource Technology, 2016, 214: 836-851. doi: 10.1016/j.biortech.2016.05.057 [19] LIAN G Q, WANG B, LEE X Q, et al. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains [J]. Science of the Total Environment, 2019, 697: 134119. doi: 10.1016/j.scitotenv.2019.134119 [20] ZHENG Y L, WANG B, WESTER A E, et al. Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar [J]. Chemical Engineering Journal, 2019, 362: 460-468. doi: 10.1016/j.cej.2019.01.036 [21] 杨奇亮, 吴平霄. 改性多孔生物炭的制备及其对水中四环素的吸附性能研究 [J]. 环境科学学报, 2019, 39(12): 3973-3984. YANG Q L, WU P X. Preparation of modified porous biochar and its adsorption properties for tetracycline in water [J]. Acta Scientiae Circumstantiae, 2019, 39(12): 3973-3984(in Chinese).
[22] 陈坦, 周泽宇, 孟瑞红, 等. 改性污泥基生物炭的性质与重金属吸附效果 [J]. 环境科学, 2019, 40(4): 1842-1848. CHEN T, ZHOU Z Y, MENG R H, et al. Characteristics and heavy metal adsorption performance of sewage sludgederived biochar from co-pyrolysis with transition metals [J]. Environmental Science, 2019, 40(4): 1842-1848(in Chinese).
[23] 王彤彤, 王晓琳, 任志胜, 等. 不同原料制备的生物炭形貌结构及表面特性研究 [J]. 环境科学与技术, 2017, 40(1): 42-48. WANG T T, WANG X L, REN Z S, et al. Microscopic morphology and surface features of biochars derived from different raw materials [J]. Environmental Science & Technology, 2017, 40(1): 42-48(in Chinese).
[24] ZHU L, LEI H W, WANG L, et al. Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics [J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 149-156. doi: 10.1016/j.jaap.2015.07.012 [25] JANG H M, KAN E. Engineered biochar from agricultural waste for removal of tetracycline in water [J]. Bioresource Technology, 2019, 284: 437-447. doi: 10.1016/j.biortech.2019.03.131 [26] 赵涛. 不同生物炭对水中磺胺类抗生素的吸附及机理研究 [D]. 广州: 华南农业大学, 2016: 31-51. ZHAO T. Absorption characteristics and mechanisms of sulfonamides in aquatic solutions by biochars derived from different biomass materials [D]. Guangzhou: South China Agricultural University, 2016: 31-51 (in Chinese).
[27] YI S Z, GAO B, SUN Y Y, et al. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars [J]. Chemosphere, 2016, 150: 694-701. doi: 10.1016/j.chemosphere.2015.12.112 [28] WANG H, CHU Y X, HUANG F, et al. Sorption of tetracycline on biochar derived from rice straw under different temperatures [J]. Plos One, 2017, 12(8): 1-14. [29] LI Y, WANG Z W, XIE X Y, et al. Removal of norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite [J]. Colloids Surfaces A Physicochemical and Engineering Aspects, 2017, 514: 126-136. doi: 10.1016/j.colsurfa.2016.11.064 [30] HUANG H, TANG J C, GAO K, et al. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics [J]. RSC Advances, 2017, 7(24): 14640-14648. doi: 10.1039/C6RA27881G [31] WANG B, GAO B, FANG J. Recent advances in engineered biochar productions and applications [J]. Critical Reviews in Environmental Science and Technology, 2017, 47(22): 2158-2207. doi: 10.1080/10643389.2017.1418580 [32] JIN H, CAPAREDA S C, CHANG Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(Ⅴ) removal: Adsorption property and its improvement with KOH activation [J]. Bioresource Technology, 2014, 169: 622-629. doi: 10.1016/j.biortech.2014.06.103 [33] KARIMNEZHAD L, HAGHIGHI M, FATEHIFAR E, et al. Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2 [J]. Frontiers of Environmental Science & Engineering, 2014, 8(6): 835-844. [34] 储刚, 赵婧, 刘洋, 等. 氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为 [J]. 环境化学, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403 CHU G, ZHAO J, LIU Y, et al. Sorption of ofloxacin and norfloxacin on modified biochars using phosphoric acid treatment [J]. Environmental Chemistry, 2018, 37(3): 462-470(in Chinese). doi: 10.7524/j.issn.0254-6108.2017090403
[35] 左昊, 徐康宁, 孟萍萍, 等. 硫酸改性小麦秸秆生物炭对氨氮吸附特性研究 [J]. 应用化工, 2017, 46(7): 1237-1242. doi: 10.3969/j.issn.1671-3206.2017.07.001 ZUO H, XU K N, MENG P P, et al. Adsorption characteristics of ammonium nitrogen in aqueous solution for biochar modified with sulfuric acid [J]. Applied Chemical Industry, 2017, 46(7): 1237-1242(in Chinese). doi: 10.3969/j.issn.1671-3206.2017.07.001
[36] VITHANAGE M, RAJAPAKSHA A U, ZHANG M, et al. Acid-activated biochar increased sulfamethazine retention in soils [J]. Environmental Science and Pollution Research, 2015, 22(3): 2175-2186. doi: 10.1007/s11356-014-3434-2 [37] 计海洋, 汪玉瑛, 刘玉学, 等. 生物炭及改性生物炭的制备与应用研究进展 [J]. 核农学报, 2018, 32(11): 207-213. JI H Y, WANG Y Y, LIU Y X. et al. Advance in preparation and application of biochar and modified biochar research [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 207-213(in Chinese).
[38] LI Y C, SHAO J G, WANG X H, et al. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption [J]. Energy & Fuels, 2014, 28(8): 5119-5127. [39] WANG R F, ZHOU Y N, MENG H B, et al. Adsorption of Cd in solution by different modified biochar [J]. Journal of Agricultural Science and Technology, 2016, 18(6): 103-111. [40] 赏国锋, 张涵, 沈逸菲, 等. 生物炭固定化硝化菌去除水样中氨氮的研究 [J]. 上海交通大学学报(农业科学版), 2014, 32(5): 44-47. SHANG G F, ZHANG H, SHEN Y F, et al. Removal of ammonia nitrogen in aqueous samples by biochar immobilized nitrifying bacteria [J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2014, 32(5): 44-47(in Chinese).
[41] 郭晓慧, 康康, 于秀男, 等. 磁改性柚子皮与杏仁壳生物炭的理化性质研究 [J]. 农业工程学报, 2018, 34(z1): 164-171. GUO X H, KANG K, YU X N, et al. Study on physicochemical properties of magnetic modified biochar derived from pyrolysis of pomelo peel and apricot kernel shell [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(z1): 164-171(in Chinese).
[42] 郑晓青, 韦安磊, 张一璇, 等. 铁锰氧化物/生物炭复合材料对水中硝酸根的吸附特性 [J]. 环境科学, 2018, 39(3): 1220-1232. ZHENG X Q, WEI A L, ZHANG Y X, et al. Characteristic of nitrate adsorption in aqueous solution by iron and manganese oxide /biochar composites [J]. Environmental Science, 2018, 39(3): 1220-1232(in Chinese).
[43] KONG X R, LIU Y X, PI J C, et al. Low-cost magnetic herbal biochar: characterization and application for antibiotic removal [J]. Environmental Science and Pollution Research, 2017, 24(7): 6679-6687. doi: 10.1007/s11356-017-8376-z [44] 李桥, 高屿涛, 姜蔚, 等. 紫外辐照改性生物炭对土壤中Cd的稳定化效果 [J]. 环境工程学报, 2017, 11(10): 5708-5714. doi: 10.12030/j.cjee.201611090 LI Q, GAO Y T, JIANG W, et al. Stabilization of Cd contaminated soil by ultraviolet irradiation modified biocha [J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5708-5714(in Chinese). doi: 10.12030/j.cjee.201611090
[45] LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water [J]. Environmental Science and Pollution Research, 2018, 25(31): 31136-31148. doi: 10.1007/s11356-018-3064-1 [46] 王瑞峰, 周亚男, 孟海波, 等. 不同改性生物炭对溶液中Cd的吸附研究 [J]. 中国农业科技导报, 2016, 18(6): 103-111. WANG R F, ZHOU Y N, MENG H B, et al. Adsorption of Cd in solution by different modified biochar [J]. Journal of Agricultural Science and Technology, 2016, 18(6): 103-111(in Chinese).
[47] 鲁小娟, 田小平, 王磊. 不同原料生物炭对NH4+-N, PO43−-P吸附性能的差异性及其成因分析 [J]. 化工环保, 2019, 39(2): 196-201. doi: 10.3969/j.issn.1006-1878.2019.02.015 LU X J, TIAN X P, WANG L. Different absorption abilities of biochars from different raw materials to NH4+-N and PO43−-P and their mechanisms [J]. Environmental Protection of Chemical Industry, 2019, 39(2): 196-201(in Chinese). doi: 10.3969/j.issn.1006-1878.2019.02.015
[48] ZHOU Q, HUANG D K, LANG Y U, et al. Effects of pyrolysis temperature, time and biochar mass ratio on pH value determination for four biochar solutions [J]. Journal of Earth Environment, 2015, 6(3): 195-200. [49] 王思源, 申健, 李盟军, 等. 不同改性生物炭功能结构特征及其对铵氮吸附的影响 [J]. 生态环境学报, 2019, 28(5): 1037-1045. WANG S Y, SHEN J, LI M J, et al. Functional and structural characteristics of different modified biochar and its impacts on ammonium nitrogen adsorption [J]. Ecology and Environmental Sciences, 2019, 28(5): 1037-1045(in Chinese).
[50] WANG W, MA X L, SUN J, et al. Adsorption of enrofloxacin on acid/alkali-modified corn stalk biochar [J]. Spectroscopy Letters, 2019, 52(7): 367-375. doi: 10.1080/00387010.2019.1648296 [51] 钟金魁, 李柳, 钟志为, 等. 生物炭对抗生素环境行为的影响研究进展 [J]. 安全与环境学报, 2018, 18(2): 657-663. ZHONG J K, LI L, ZHONG Z W, et al. Advances on the research of the effect of biochar on the environmental behavior of antibiotics [J]. Journal of Safety and Environment, 2018, 18(2): 657-663(in Chinese).
[52] 程扬, 沈启斌, 刘子丹, 等. 两种生物炭的制备及其对水溶液中四环素去除的影响因素 [J]. 环境科学, 2019, 40(3): 1328-1336. CHENG Y, SHEN Q B, LIU Z D, et al. Preparation of two kinds of biochar and the factors influencing tetracycline removal from aqueous solution [J]. Environmental Science, 2019, 40(3): 1328-1336(in Chinese).
[53] PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review [J]. Bioresource Technology, 2017, 246: 150-159. doi: 10.1016/j.biortech.2017.07.150 [54] 王娅南, 彭洁, 黄合田, 等. 贵阳市城市河流典型抗生素的分布特征 [J]. 环境化学, 2018, 37(9): 160-169. WANG Y N, PENG J, HUANG H T, et al. Distribution characteristics of typical antibiotics in Urban Rivers of Guiyang City [J]. Environmental Chemistry, 2018, 37(9): 160-169(in Chinese).
[55] TIAN S Q, WANG L, LIU Y L, et al. Enhanced permanganate oxidation of sulfamethoxazole and removal of dissolved organics with biochar: Formation of highly oxidative manganese intermediate species and in-situ activation of biochar [J]. Environmental Science & Technology, 2019, 53(9): 5282-5291. [56] ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment [J]. Chemosphere, 2018, 191: 64-71. doi: 10.1016/j.chemosphere.2017.10.026 [57] 杜文琪, 曹玮, 周航, 等. 磁性生物炭对重金属污染废水处理条件优化及机理 [J]. 环境科学学报, 2018, 38(2): 492-500. DU W Q, CAO W, ZHOU H, et al. Optimization and the mechanismin treatment of heavy metals wastewater with magnetic biochar [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 492-500(in Chinese).
[58] REGUYAL F, SARMAH A K, GAO W. Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution [J]. Journal of Hazardous Materials, 2016, 321: 868-878. [59] GUO X, DONG H, YANG C, et al. Application of goethite modified biochar for tylosin removal from aqueous solution [J]. Colloids Surfaces A:Physicochemical Engineering Aspects, 2016, 502: 81-88. doi: 10.1016/j.colsurfa.2016.05.015 [60] FU H, LI X B, WANG J, et al. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling [J]. Journal of Environmental Sciences, 2017, 29(6): 145-152. [61] HU Y, ZHU Y, ZHANG Y, et al. An efficient adsorbent: Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption [J]. Bioresource Technology, 2019, 288: 121511. doi: 10.1016/j.biortech.2019.121511 [62] 张杏艳, 陈中华, 龚胜, 等. 畜禽粪便残留四环素类抗生素的水体污染状况及生态毒理效应 [J]. 畜牧与饲料科学, 2016, 37(5): 30-33. doi: 10.3969/j.issn.1672-5190.2016.05.011 ZHANG X Y, CHEN Z H, GONG S, et al. Current situation of water pollution caused by tetracycline antibiotics in animal manure and its ecotoxicological effect [J]. Animal Husbandry and Feed Science, 2016, 37(5): 30-33(in Chinese). doi: 10.3969/j.issn.1672-5190.2016.05.011
[63] CHEN T W, LUO L, DENG S H, et al. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure [J]. Bioresource Technology, 2018, 267: 431-437. doi: 10.1016/j.biortech.2018.07.074 [64] JING X R, WANG Y Y, LIU W J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar [J]. Chemical Engineering Journal, 2014, 248: 168-174. doi: 10.1016/j.cej.2014.03.006 [65] ZHOU Y Y, HE Y Z, LIU X C, et al. Analyses of tetracycline adsorption on alkali-acid modified magnetic biochar: Site energy distribution consideration [J]. Science of the Total Environment, 2019, 650: 2260-2266. doi: 10.1016/j.scitotenv.2018.09.393 [66] 朱琳, 张远, 渠晓东, 等. 北京清河水体及水生生物体内抗生素污染特征 [J]. 环境科学研究, 2014, 27(2): 139-146. ZHU L, ZHANG Y, QU X D, et al. Occurrence of antibiotics in aquatic plants and organisms from qing river, Beijing [J]. Research of Environmental Sciences, 2014, 27(2): 139-146(in Chinese).
[67] GUO X T, ZHANG J, GE J H, et al. Sorption and photodegradation of tylosin and sulfamethazine by humic acid-coated goethite [J]. RSC Advances, 2015, 5(122): 100464-100471. doi: 10.1039/C5RA17587A [68] 吴智威. 改性竹炭负载Fe/Cu对废水中氯霉素去除研究 [D]. 武汉: 华中科技大学, 2012. 17-58. WU Z W. Modified bamboo charcoal loading Fe/Cu to remove chloramphenicol in wastewater [J]. Wuhan: Huazhong University of Science and Technology, 2012. 17-58 (in Chinese).
[69] AHMED M B, ZHOU J L, NGO H H, et al. Nano-Fe0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite [J]. Chemical Engineering Journal, 2017, 322: 571-581. doi: 10.1016/j.cej.2017.04.063 [70] 朱青. 改性生物炭对水中磺胺嘧啶的去除试验研究 [D]. 济南: 山东师范大学, 2018. 13-38. ZHU Q. Modified biochar to remove sulfadiazinel in wastewater [D]. Jinan: Shandong Normal University, 2018. 13-38 (in Chinese).
[71] HUANG J S, ZIMMERMAN A R, CHEN H, et al. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater [J]. Environmental Pollution, 2020, 258: 113809. doi: 10.1016/j.envpol.2019.113809 [72] XIANG Y J, XU Z Y, ZHOU Y Y, et al. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium [J]. Chemosphere, 2019, 237: 124464. doi: 10.1016/j.chemosphere.2019.124464 [73] OLADIPO A A, IFEBAJO A O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis [J]. Journal of Environmental Management, 2018, 209: 9-16. [74] LIU J L, ZHOU B Q, ZHANG H, et al. A novel biochar modified by chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution [J]. Bioresource Technology, 2019, 294: 122152. doi: 10.1016/j.biortech.2019.122152 [75] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99(3): 19-33. [76] WANG H, FANG C R, WANG Q, et al. Sorption of tetracycline on biochar derived from rice straw and swine manure [J]. Rsc Advances, 2018, 8(29): 16260-16268. doi: 10.1039/C8RA01454J [77] LIAN F, SUN B B, CHEN X, et al. Effect of humic acid (HA) on sulfonamide sorption by biochars [J]. Environmental Pollution, 2015, 204: 306-312. doi: 10.1016/j.envpol.2015.05.030 [78] WANG W, ZHANG J, CHEN T, et al. Preparation of TiO2-modified biochar and its characteristics of photo-catalysis degradation for enrofloxacin [J]. Entific Reports, 2020, 10(1): 6588. [79] ZENG S, KAN E. Chemical activation of forage grass-derived biochar for treatment of aqueous antibiotic sulfamethoxazole [J]. Acs Omega, 2020, 5(23): 13793-13801. doi: 10.1021/acsomega.0c00983 [80] LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole [J]. Chemical Engineering Journal, 2014, 248: 128-134. doi: 10.1016/j.cej.2014.03.021 [81] 郎印海, 刘犇, 何淑雯, 等. 诺氟沙星在壳聚糖-生物炭复合材料上的解吸行为研究 [J]. 中国海洋大学学报, 2018, 48(11): 22-28. LANG Y H, LIU B, HE S W, et al. Desorption of norfloxacin sorbed on chitosan-biochar composite [J]. Journal of Ocean University of China, 2018, 48(11): 22-28(in Chinese).
[82] HAMEED B H, SALMAN J M, AHMAD A L. Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones [J]. Journal of Hazardous Materials, 2018, 163(1): 121-126. [83] ZHOU Y Y, LIU X C, XIANG Y J, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling [J]. Bioresource Technology, 2017, 245: 266-273. doi: 10.1016/j.biortech.2017.08.178 [84] AHMED M B, ZHOU J L, NGO H H, et al. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water [J]. Chemical Engineering Journal, 2017, 311: 348-358. doi: 10.1016/j.cej.2016.11.106