-
精神活性物质是指摄入人体后影响思维、情感、意志行为等心理过程的物质,一般可分为用于治疗精神类疾病的精神药品和违禁药品。目前,已有大量精神药品被用于治疗精神类疾病。其中苯二氮卓类药物是最为常用的一类精神疾病处方药物,用于治疗焦虑、失眠和癫痫等,包括地西泮、奥沙西泮以及劳拉西泮等[1]。违禁药品一般指与医疗、预防和保健目的无关的,用药者采用自身给药的方式,会导致精神依赖性和生理依赖性,造成精神紊乱或精神亢奋和出现一系列异常行为,并且反复大量使用有依赖性特性的药物,可分为可卡因类、安非他命类、鸦片类、大麻类以及摇头丸类等[2]。
精神活性物质已经成为环境中的新型污染物。与常规药物类似,精神活性物质被服用后,生成的代谢产物和未被代谢的部分原药随尿液进入市政管道,汇入污水处理厂。由于部分精神活性物质及其代谢产物较难被传统活性污泥法降解去除,经污水处理厂处理后,未被去除的精神活性物质及其代谢产物被排入自然水体中。当前,已经在国内外污水处理厂进出水口[3-6]、地表水[7-10]、底泥[11]以及自来水[12-14]中均检测到了精神活性物质的残留。同时,精神活性物质可蓄积在水生生物体内,通过影响水生生物血液中神经递质含量,对其行为造成不利影响,进而影响水生态系统的稳定。有研究表明,在鱼体各组织(肝、脑、肌肉)中检测到一定程度的精神活性物质蓄积[15]。精神活性物质被鱼体吸收后,通过血液传输至各组织器官,因此鱼血中的残留浓度可以较好地反映水环境中精神活性物质的残留状况[16]。但是,目前鲜有研究对鱼血中的精神活性物质进行残留分析。
对于血清的前处理通常使用液液萃取法(LLE)[17]、蛋白质沉淀法(PPT)[18]和固相萃取法(SPE)[19]。其中,液液萃取法虽然对血清中的大分子蛋白质的净化完全,但操作繁琐、耗时较长、需要消耗大量溶剂;蛋白沉淀法虽然操作简单,但对分子量较小的蛋白质和大部分磷脂的去除不完全,易导致基质效应干扰明显;固相萃取法虽然有比较好的除杂效果和较高的回收率,但可能造成目标物和蛋白质或磷脂的共萃取效应,且操作复杂,成本较高[20]。QuEChERS方法最初用于检测水果和蔬菜中农药检测的前处理,分为乙腈提取和吸附剂净化两步。QuEChERS方法采用乙腈为萃取剂能有效降低脂肪等大分子的共萃出,降低基质效应,同时利用吸附剂净化处理简单、快速。因此,QuEChERS方法正不断发展成为各类介质,如底泥[21]、食物[22]中多种有机污染物检测的前处理方法。
大部分精神活性物质在环境中和生活体内通常以ng·L−1—µg·L−1的浓度水平存在,因此具有高选择性、高灵敏度优势超高效液相色谱−串联质谱技术(UPLC-MS/MS)成为了对多种精神活性进行同时快速检测的首选[12, 23-25]。有研究建立了一种检测人体血液中13种精神活性物质的方法,检测限可达0.008—0.15 ng·mL−1 [26]。
本文建立了一种基于QuEChERS前处理方法的鱼血清中19种精神活性物质同时检测的快速分析方法,并成功利用该方法对鲫鱼血清中的精神活性物质残留进行分析。该方法为评估精神活性物质在鱼体的内暴露浓度和蓄积效应提供了快速、简便、可靠的方法。
-
超高效液相色谱-三重四极杆串联质谱仪(Xevo TQ-S,Waters,美国),采用电喷雾离子源(ESI);马弗炉(Thermo,美国);高速冷冻离心机(Centrifuge 5430,Eppendorf,德国);Milli-Q纯水仪(Millipore,美国);氮吹浓缩仪(N-EVAP-12,Organomation,美国);分析天平(220 g / 0.1 mg,ME204,Mettler-Toledo,瑞士)。
19种精神活性物质和10种同位素内标均购自美国Cerilliant公司,具体名称和分类见表1。精神活性物质液体标准品分别由甲醇或乙腈配制成质量浓度1 mg·mL−1的储备液,−20 ℃保存备用。配制低浓度单标或混标溶液时用5%乙腈稀释。
甲醇购自美国Fisher Scientific公司,乙腈购自中国麦克林公司,纯度均为LC-MS级。甲酸(Formic acid,FA,纯度99.0%)购自中国百灵威公司。吸附剂PSA(N-丙基乙二胺)购自美国Agilent Technologies公司,C18购自美国Welch Materials公司,分析纯中性氧化铝购自中国百灵威公司。分析纯中性Al2O3 使用前放入马弗炉中180 ℃烘烤12 h进行活化。
-
用于采集血清的鲫鱼样品购买自中国东部某城市超市,购买后立即进行取血操作。取血方式为尾静脉取血。取出的鱼血在4℃冰箱中静置30 min,然后在3000 r·min−1,4 ℃条件下离心10 min,取出上层血清样品,−20 ℃保存。
前处理方法为取100 µL血清于1.5 mL离心管中,加入400 µL 含0.1%(V∶V)甲酸的90%(V∶V)乙腈水溶液和20 μL浓度为100 ng·mL−1的同位素内标混合溶液,涡旋混匀,在4 ℃冰箱静置20 min。在12000 r·min−1,4 ℃下离心10 min,转移上清液至加入了20 mg PSA,10 mg中性Al2O3以及10 mg C18的1.5 mL离心管中,涡旋混匀。在12000 r·min−1,4 ℃下再次离心10 min,转移上清液至新的1.5 mL离心管中,氮吹浓缩至近干,用200 μL 5%(V∶V)乙腈水溶液复溶,过0.22 μm滤膜(津腾,PTFE滤膜),进UPLC-MS/MS分析。
-
液相分离色谱柱为BEH C18柱(2.1 mm×100 mm,1.7 μm,Waters),柱前加VanGuard保护柱(2.1 mm×5 mm,1.7 μm)。分析时,柱温设置为40 ℃,进样量为10 μL。色谱分离采用乙腈/水(A:乙腈,B:水,均含0.1%甲酸)二元溶剂洗脱,流速为0.3 mL·min−1,梯度洗脱程序为:0 min 5% A,2 min 25% A,6 min 75% A,7 min 95% A,8 min 5% A。
质谱使用ESI离子源,运行模式为正离子模式,扫描模式为多反应选择离子监测(multiple reaction monitoring,MRM)。氩气作为碰撞气,氮气作为脱溶剂气,流速为800 L·h−1,脱溶剂温度为350 ℃。毛细管电压设置为3.5 kV。利用Masslynx软件中的IntelliStart功能,自动调谐找到目标化合物的最佳质谱参数,包括母离子、子离子、锥孔电压和碰撞能量。
-
血清样品基质复杂,为了验证和评价方法的可靠性,对前处理方法的基质效应、相对回收率、方法空白、仪器检测限和方法检测限等参数进行了测定。用于参数验证的血清样品均为同一份血清。具体方法如下:
基质效应(ME):100 μL血清样品按照“1.2节”方法进行前处理,氮吹至近干后,加入200 μL浓度为0.5 ng·mL−1或5 ng·mL−1的精神活性物质标准溶液复溶,使用UPLC-MS/MS测定精神活性物质浓度为c1。另取100 μL血清样品按照“1.2节”方法进行前处理,氮吹至近干后,加入200 μL 5%乙腈溶液复溶,使用UPLC-MS/MS测定精神活性物质浓度为c0。根据公式(1)进行计算,得到各物质的ME。
相对回收率(Rr):100 μL血清样品加入20 μL浓度为5 ng·mL−1或50 ng·mL−1的精神活性物质混合标准溶液,按照“1.2节”方法进行前处理,氮吹至近干后,加入200 μL 5%乙腈溶液复溶,使用UPLC-MS/MS测定精神活性物质浓度为c2。根据公式(2)进行计算,得到各物质的Rr。
方法空白:100 μL血清样品按照“1.2”方法进行前处理,氮吹至近干后,加入200 μL 5%乙腈溶液复溶,使用UPLC-MS/MS测定精神活性物质浓度。
仪器检测限(instrument detection limit,IDL)使用EPA[27]的推荐方法测定:配制浓度(c)为0.1、1、10、100 ng·mL−1的精神活性物质混合标准溶液,每个浓度连续进样5次,计算仪器绝对响应平均值(mean peak area,
$\bar X $ )和相对标准偏差(relative standard deviation,RSD);tα为响应值在99%置信区间,自由度为5 情况下的t 检验分布区间值。取不同加标浓度计算值的最小值作为IDLs,具体计算方法见公式(3)。方法检测限(method detection limits,MDL):根据IDL和Rr计算获得,具体计算方法见公式(4)。IDL乘以最后复溶溶液体积0.2 mL,得到精神活性物质最低进样量,再除以相对回收率校正前处理损失,得到进样前样品中所含的精神活性物质的量,最后除以样品体积0.1 mL,得到样品中所含的精神活性物质浓度,即MDL。
其中,C为相对应的标准溶液浓度(0.5 ng·mL−1或5 ng·mL−1);c为仪器检测限配制的浓度(0.1、1、10、100 ng·mL−1);c0为鱼血清本底中的精神活性物质浓度;c1为前处理后加入标液所测得的精神活性物质浓度;c2为加标液前处理后所测得的精神活性物质浓度。MDL计算中Rr取0.5、5 ng·mL−1两种加标浓度回收率的平均值,0.2 mL为复溶溶液体积,0.1 mL为所取的鱼血清体积。
-
在正离子模式下,两流动相组分中均添加0.1%甲酸,促进目标物质电离,使得19种精神活性物质均可以得到较好的分离和较好的质谱响应。图1是按“1.3”节仪器分析条件得到的19种精神活性物质和10种同位素标准溶液的总离子流色谱图(10 ng·mL−1)。表2是“1.3”节仪器分析条件下19种精神活性物质及10种同位素内标的保留时间、反应离子对、碰撞能量、锥孔电压和对应内标物等质谱参数。
-
计算得到的基质效应、相对回收率和检测限见表3。所有精神活性物质的方法空白均 < MDL。
使用本文前处理方法,然后使用UPLC-MS/MS同时分析鱼血清中19种精神活性物质在加标浓度为0.5 ng·mL−1和5 ng·mL−1条件下的基质效应在76.7%—127.7%之间,优于文献报道的基质效应(如DIAZ在5 ng·mL−1下的基质效应为195.7%[26]),表明经过前处理后,精神活性物质受基质影响较小。各物质的相对回收率处于81.1%—123.9%之间。采用基质匹配标准曲线对目标物进行定量。基质匹配标准曲线使用经本文”1.2”前处理方法氮吹浓缩至近干后的血清样品,分别添加200 μL浓度为0.1、0.5、1、5、10、50 ng·mL−1标准物质混合溶液,使用UPLC-MS/MS进行测定,根据添加的精神活性物质峰面积(扣除本底)和相应的同位素内标峰面积之比与精神活性物质的浓度绘制而成。4-MMC,OH-MIDZ,OH-ALPZ,OXA,LORZ,LRMZ,TEMZ和DIAZ在0.1—50 ng·mL−1范围内呈良好的线性关系,其余物质的线性范围为0.1—10 ng·mL−1。除LSD和 Carfentanil外(R2分别0.9851和0.9842)外,17种精神活性物质的相关系数R2范围为0.9966—0.9999。各物质的方法检测限在0.02—0.06 ng·mL−1,优于其他文献报道的血清中相应精神活性物质的方法检测限(DIAZ最低检出限为0.07 µg·mL−1)[28]。
研究评估了仪器有效性和方法有效性,结果见表4。仪器有效性包括仪器日内精密度和日间精密度,方法有效性包括方法精密度和方法准确度,均使用2个不同浓度(0.5 ng·mL−1和5 ng·mL−1)进行分析。方法精密度和方法准确度由2个加标浓度的鱼血清样品经“1.2”方法进行前处理分析得到。精密度用相对标准偏差(RSD)表示,准确度用误差(Er)表示。当加标浓度为0.5 ng·mL−1和5 ng·mL−1时,仪器日内相对标准偏差小于6.4%,而日间(3 d))相对标准偏差在0.5%—31.9%之间。方法误差在0.5 ng·mL−1时介于0.1%—23.9%之间,而5 ng·mL−1时则均
$\leqslant $ 22.0%。方法相对标准偏差在0.5 ng·mL−1时介于2.0%—14.8%,而5 ng·mL−1时介于0.8—18.0%。结果表明该方法准确度较高,精密度较好,证明采用QuEChERS-超高效液相色谱−串联质谱法对19种精神活性物质进行定量分析较为可靠。 -
从中国东部某城市超市中购买8条鲫鱼,分别采集其血清,得到8个血清样品,采用本研究开发的QuEChERS-UPLC-MS/MS方法分析鱼血清中的19种精神活性物质残留。结果表明,在7个血清样品中检测到了7种精神活性物质的残留,其中4种为精神药品,3种为违禁药品,具体残留情况见表5。MAMP为检出率最高的物质,达到88%,最高检出浓度为3.93 ng·mL−1,中值浓度为1.59 ng·mL−1,这可能与中国地表水中广泛存在的MAMP残留相关。6-AM的检出率为25%,检出最高浓度为0.07 ng·mL−1。KET作为在中国地表水中检出浓度最高的两种违禁药品之一(另一为MAMP),仅在2号样品中检出,浓度为0.04 ng·mL−1,表明其在鱼血清中蓄积不明显。有研究表明,KET在鱼体皮肤上残留最为明显,最高浓度达到0.2 ng·g−1,而在腮、脑、肉以及肝脏中的残留浓度则均小于0.1 ng·g−1[15]。同时,对北京主要河流中的鱼进行整体匀浆,在其中检测到了浓度为0.01—0.06 ng·g−1的BE残留,这可能是与北京河流中BE残留浓度较高有关[15]。DIAZ是中国使用最为广泛的精神药物之一,在地表水中也有广泛残留,但是其在鱼血清中检出率仅为25%,检出最高浓度为0.04 ng·mL−1,这可能是因为DIAZ易于在鱼体内代谢转化。OH-MIDZ、OXA和TEMZ分别仅在1号、2号和3号样品中检出。每个血清样本的精神活性物质总和浓度范围在<MDL—3.93 ng·mL−1,中值浓度为1.82 ng·mL−1。综上所述,精神活性物质在鱼血清中有明显残留,可能产生一定的生态风险,需要进一步研究。
-
本文建立了一种QuEChERS-UPLC-MS/MS分析方法,可同时检测鱼血清中19种精神活性物质。该方法基质效应在76.7%—127.7%之间,相对回收率在81.1%—123.9%之间,方法误差均
$\leqslant $ 23.9%,方法相对标准偏差均$\leqslant $ 18.0%,方法检测限在0.02—0.06 ng·mL−1。该方法可有效去除基质干扰,方法回收率较好,准确度和精密度较高。将该方法成功应用于鲫鱼血清中精神活性物质的残留分析,结果表明MAMP为鱼血清中主要残留的精神活性物质。本方法通过测定19种精神活性物质在鱼血清中的残留情况可以较为全面、真实地表征精神活性物质在水生生物体内的内暴露浓度,对后续精神活性物质对水生生物神经毒性以及行为的影响研究奠定基础。
QuEChERS-超高效液相色谱-串联质谱法测定鱼血清中的精神活性物质
Simultaneous determination of psychoactive substances in fish serum by QuEChERS and ultra-high performance liquid chromatography coupled with tandem mass spectrometry
-
摘要: 本文建立了一种同时测定鱼血清中19种精神活性物质的分析方法。该方法基于QuEChERS方法对样品进行提取和净化,待测物采用超高效液相色谱-串联质谱法(UPLC-MS/MS)进行分析,检测的19种精神活性物质均采用同位素内标法定量。该方法的方法检测限(MDL)范围为0.02—0.06 ng·mL−1,基质效应处于76.7%—127.7%之间,相对回收率处于81.1%—123.9%之间,方法相对标准偏差均
$\geqslant $ 18.0%。该方法成功应用于对鲫鱼血清中19种精神活性物质的残留检测。Abstract: A method was developed to simultaneously detect 19 psychoactive substances in fish serum. The serum was extracted and purified by QuEChERS, and then analyzed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS).The method detection limits (MDLs) were in the range of 0.02 ng·mL−1 to 0.06 ng·mL−1. The matrix effects were between 76.7% and 127.7%. The relative recoveries ranged from 81.1% to 123.9% with the relative standard deviations of method$\geqslant $ 18.0%. The method has been successfully employed to analyze the 19 psychoactive substances in serums of Crucian carp (Carassius carassius).-
Key words:
- psychoactive substances /
- serum /
- fish /
- QuEChERS /
- liquid chromatography-tandem mass spectrometry
-
-
表 1 19种精神活性物质和10种同位素内标信息
Table 1. Information of psychoactive substances
物质名称Compound 英文全称English name 简称Abbreviated name 类别Class 阿普唑仑 Alprazolam ALPZ 精神药品 阿尔法羟基阿普唑仑 α-Hydroxy-alprazolam OH-ALPZ 地西泮 Diazepam DIAZ 劳拉西泮 Lorazepam LORZ 氯甲西泮 Lormetazepam LRMZ 咪达唑仑 Midazolam MIDZ 精神药品 阿尔法羟基咪达唑仑 α-Hydroxy-midazolam OH-MIDZ 奥沙西泮 Oxazepam OXA 替马西泮 Temazepam TEMZ 4-甲氧基甲基苯丙胺 N-Methyl-1-(4-methoxyphenyl)propan-2-amine PMMA 违禁药品 1-(3,4-亚甲基二氧苯基)-2-吡咯烷-1-基戊酮 3,4-Methylenedioxypyrovalerone MDPV 甲氧麻黄酮 Mephedrone 4-MMC 卡芬太尼 Carfentanil Carfentanil 麦角酸二乙基酰胺 Lysergic acid diethylamide LSD 氯胺酮 Ketamine KET 甲基苯丙胺 methamphetamine MAMP 3,4-亚甲基二氧基甲基苯丙胺 3,4-Methylenedioxypyrovalerone MDMA 苯甲酰爱康宁 Benzoylecgonine BE 6-乙酰吗啡 6-acetylmorphine 6-AM 地西泮-d5 Diazepam-d5 DIAZ-d5 同位素 劳拉西泮-d4 Lorazepam-d4 LORZ-d4 奥沙西泮-d5 Oxazepam-d5 OXA-d5 替马西泮-d5 Temazepam-d5 TEMZ-d5 1-(3,4-亚甲基二氧苯基)-2-吡咯烷-1-基戊酮-d8 3,4-Methylenedioxypyrovalerone-d8 MDPV-d8 甲氧麻黄酮-d3 Mephedrone-d3 4-MMC-d3 3,4-亚甲基二氧基甲基苯丙胺-d5 3,4-Methylenedioxymethamphetamine-d5 MDMA-d5 甲基苯丙胺-d5 Methamphetamine-d5 MAMP-d5 苯甲酰爱康宁-d8 Benzoylecgonine-d8 BE-d8 氯胺酮-d4 Ketamine-d4 KET-d4 表 2 精神活性物质仪器分析参数
Table 2. Instrumental parameters of analysis of psychoactive substances
物质名称
Compound保留时间/min
Retention time反应离子对
Transitions碰撞能量/eV
Collision energy锥孔电压/V
Cone voltage对应内标物
Internal standards6-AM 2.65 327.9>210.8 26 46 4-MMC-d3 327.9>164.7* 36 MAMP 2.86 150.1>91.0* 16 30 MAMP-d5 150.1>119.0 10 MDMA 2.87 193.8>162.7* 12 24 MDMA-d5 193.8>104.7 28 PMMA 2.99 179.8>148.7* 8 28 BE-d8 179.8>120.7 20 4-MMC 3.08 177.8>144.7* 18 34 4-MMC-d3 177.8>118.8 20 BE 3.04 289.8>167.8* 18 44 BE-d8 289.8>104.7 32 KET 3.13 237.8>124.7* 24 34 KET-d4 237.8>178.8 16 MDPV 3.76 275.9>125.8* 24 38 MDPV-d8 275.9>134.7 22 LSD 3.87 323.9>222.8* 24 8 KET-d4 323.9>206.9 44 OH-MIDZ 4.26 341.8>202.8* 26 10 OXA-d5 341.8>167.7 38 MIDZ 4.40 325.8>290.8* 26 70 OXA-d5 325.8>248.9 36 Carfentanil 4.73 395.3>335.2* 18 32 MDPV-d8 395.3>113.1 28 OH-ALPZ 4.70 324.8>296.8* 28 56 OXA-d5 324.8>215.8 38 OXA 4.87 286.8>162.7* 34 40 OXA-d5 286.8>76.7 46 LORZ 4.98 320.8>228.8* 32 12 LORZ-d4 320.8>193.7 42 ALPZ 4.99 308.8>204.7* 42 66 LORZ-d4 308.8>280.8 26 TEMZ 5.35 300.8>238.7 44 44 TEMZ-d5 300.8>192.7* 34 LRMZ 5.49 334.8>176.7* 40 58 DIAZ-d5 334.8>266.6 16 DIAZ 5.69 284.8>221.7 24 62 DIAZ-d5 284.8>192.7* 28 MAMP-d5 2.87 154.8>91.4* 16 28 MDMA-d5 2.87 198.8>164.7* 12 20 4-MMC-d3 3.07 180.8>147.7* 20 30 BE-d8 3.02 297.9>170.8* 20 10 KET-d4 3.13 241.8>128.7* 28 24 MDPV-d8 3.75 283.9>134.2* 26 38 OXA-d5 4.85 291.8>235.8* 22 30 LORZ-d4 4.96 324.8>232.8* 28 24 TEMZ-d5 5.32 305.8>176.9* 42 38 DIAZ-d5 5.66 289.8>153.8* 28 54 注:*:定量离子对; Note:*:Quantification transition. 表 3 方法基质效应、相对回收率和检测限(mean ± SD)
Table 3. Matrix effects, relative recoveries and detection limits
物质名称
Compound基质效应ME/% 相对回收率Rr/% 仪器检测限
IDL/(ng·mL−1)方法检测限
MDL/(ng·mL−1)0.5 ng·mL−1 5 ng·mL−1 0.5 ng·mL−1 5 ng·mL−1 6-AM 102.9±7.4 105.4±3.7 83.3±11.2 88.0±15.8 0.01 0.02 MAMP 96.2±2.7 102.1±7.2 101.6±8.2 97.9±8.3 0.03 0.06 MDMA 101.0±6.1 104.9±4.2 102.4±4.4 100.9±1.6 0.02 0.04 PMMA 108.6±4.9 103.1±3.6 114.1±5.3 111.3±4.4 0.01 0.02 4-MMC 106.4±3.3 108.2±3.6 110.2±3.4 108.1±2.3 0.01 0.02 BE 98.2±2.5 102.7±3.3 103.6±3.2 99.4±2.5 0.01 0.02 KET 127.7±31.4 103.6±6.6 110.3±10.7 102.1±3.3 0.01 0.02 MDPV 100.3±4.3 103.6±4.0 105.3±5.0 101.3±3.1 0.02 0.04 LSD 111.3±2.9 94.3±22.2 105.6±4.2 100.2±5.4 0.03 0.06 OH-MIDZ 109.3±10.0 108.6±5.8 123.9±18.2 122.0±20.3 0.01 0.02 MIDZ 108.4±8.9 105.9±5.2 121.6±18.0 120.2±20.5 0.01 0.02 Carfentanil 113.5±1.2 122.6±4.8 109.0±13.0 119.2±4.2 0.01 0.02 OH-ALPZ 77.3±10.0 76.7±5.9 81.1±8.8 83.2±13.2 0.01 0.02 OXA 84.0±2.5 85.5±2.2 86.0±3.1 84.4±0.7 0.01 0.02 LORZ 97.7±4.2 101.7±6.4 99.1±7.1 101.9±1.8 0.01 0.02 ALPZ 96.5±12.1 98.9±7.1 107.6±13.6 113.7±20.4 0.01 0.02 TEMZ 94.0±6.2 98.1±6.1 100.5±4.2 95.8±3.2 0.01 0.02 LRMZ 98.4±2.9 106.2±4.3 100.1±7.8 99.9±5.0 0.01 0.02 DIAZ 98.7±2.0 104.3±6.2 96.7±2.0 95.5±1.5 0.01 0.02 注:基质效应>100%表示增强,<100%表示抑制.
Note: matrix effect > 100% means enhancement, <100% means suppression.表 4 仪器有效性和方法有效性(n=3)
Table 4. Instrumental validation and method validation
物质名称Compound 仪器日内相对标准偏差/%
Instrumental Intra-day RSD仪器日间相对标准偏差/%
Instrumental Inter-day RSD方法误差/%
Method Er方法相对标准偏差/%
Method RSD0.5 ng·mL−1 5 ng·mL−1 0.5 ng·mL−1 5 ng·mL−1 0.5 ng·mL−1 5 ng·mL−1 0.5 ng·mL−1 5 ng·mL−1 6-AM 2.6 4.2 5.1 15.6 −16.7 −12.0 13.5 18.0 MAMP 4.2 2.3 5.9 6.8 1.6 −2.1 8.1 8.4 MDMA 0.9 1.7 21.1 9.1 2.4 0.9 4.3 1.5 PMMA 2.7 2.9 11.1 8.0 14.1 11.3 4.6 4.0 4-MMC 4.6 1.7 9.2 5.1 10.2 8.1 3.1 2.1 BE 6.4 0.3 4.1 7.9 3.6 −0.6 3.1 2.5 KET 2.5 0.6 7.6 9.8 10.3 2.1 9.7 3.2 MDPV 3.8 2.8 19.0 6.7 5.3 1.3 4.8 3.1 LSD 5.0 1.4 16.2 25.0 5.6 0.2 4.0 5.3 OH-MIDZ 1.6 1.1 1.9 0.5 23.9 22.0 14.6 16.6 MIDZ 3.7 0.9 31.9 18.5 21.6 20.2 14.8 17.0 Carfentanil 1.7 0.6 26.0 21.3 9.0 19.2 11.9 3.5 OH-ALPZ 2.7 0.8 8.0 3.6 −18.9 −16.8 10.8 15.9 OXA 2.0 1.5 6.5 4.8 −14.0 −15.6 3.6 0.8 LORZ 2.1 1.2 6.7 0.6 −0.9 1.9 7.1 1.8 ALPZ 4.6 1.2 3.9 2.4 7.6 13.7 12.6 17.9 TEMZ 3.2 2.3 10.2 2.7 0.5 −4.2 4.2 3.4 LRMZ 5.5 0.9 1.1 3.0 0.1 −0.1 7.8 5.0 DIAZ 5.1 1.1 9.5 5.3 −3.3 −4.5 2.0 1.5 表 5 鲫鱼血清样本中精神活性物质残留情况
Table 5. Psychoactive substance residues in crucian carp serum samples
物质名称
Compound检出率a
DFa浓度范围/(ng·mL−1)
Range中值浓度/(ng·mL−1)
MedianKET 1/8 < MDL—0.04 < MDL MAMP 7/8 < MDL—3.93 1.59 DIAZ 2/8 < MDL—0.04 < MDL OXA 1/8 < MDL—0.14 < MDL TEMZ 1/8 < MDL—0.04 < MDL 6-AM 2/8 < MDL—0.07 < MDL OH-MIDZ 1/8 < MDL—0.23 < MDL $ \displaystyle\sum \mathrm{p}\mathrm{s}\mathrm{y}\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s} $ 7/8 < MDL—3.93 1.82 a: 有精神活性物质检出的样本数/总样本数.
a: Number of samples with detection of psychoactive substances / Total number of samples. -
[1] CALISTO V, ESTEVES V I. Psychiatric pharmaceuticals in the environment [J]. Chemosphere, 2009, 77(10): 1257-1274. doi: 10.1016/j.chemosphere.2009.09.021 [2] PAL R, MEGHARAJ M, KIRKBRIDE K P, et al. Illicit drugs and the environment — A review [J]. Science of The Total Environment, 2013, 463-464: 1079-1092. doi: 10.1016/j.scitotenv.2012.05.086 [3] DU P, ZHOU Z L, BAI Y, et al. Estimating heroin abuse in major Chinese cities through wastewater-based epidemiology [J]. Science of the Total Environment, 2017, 605/606: 158-165. doi: 10.1016/j.scitotenv.2017.05.262 [4] GAO T T, DU P, XU Z Q, et al. Occurrence of new psychoactive substances in wastewater of major Chinese cities [J]. Science of the Total Environment, 2017, 575: 963-969. doi: 10.1016/j.scitotenv.2016.09.152 [5] DU P, LI K Y, LI J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology [J]. Water Research, 2015, 84: 76-84. doi: 10.1016/j.watres.2015.07.025 [6] MWENESONGOLE E M, GAUTAM L, HALL S W, et al. Simultaneous detection of controlled substances in waste water [J]. Analytical Methods, 2013, 5(13): 3248. doi: 10.1039/c3ay40655e [7] LI K Y, DU P, XU Z Q, et al. Occurrence of illicit drugs in surface waters in China [J]. Environmental Pollution, 2016, 213: 395-402. doi: 10.1016/j.envpol.2016.02.036 [8] ZHANG Y, ZHANG T T, GUO C S, et al. Drugs of abuse and their metabolites in the urban rivers of Beijing, China: Occurrence, distribution, and potential environmental risk [J]. Science of the Total Environment, 2017, 579: 305-313. doi: 10.1016/j.scitotenv.2016.11.101 [9] 周志刚, 郑蓝君, 王嘉玲. 固相萃取UPLC-MS/MS法同时检测水体中3种毒品代谢物 [J]. 药物分析杂志, 2017, 37(10): 1876-1881. ZHOU Z G, ZHENG L J, WANG J L. Solid-phase extraction UPLC-MS/MS method for simultaneous detection of three drug metabolites in water [J]. Chinese Journal of Pharmaceutical Analysis, 2017, 37(10): 1876-1881(in Chinese).
[10] FICK J, BRODIN T, HEYNEN M, et al. Screening of benzodiazepines in thirty European rivers [J]. Chemosphere, 2017, 176: 324-332. doi: 10.1016/j.chemosphere.2017.02.126 [11] LANGFORD K H, REID M, THOMAS K V. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge [J]. Journal of Environmental Monitoring, 2011, 13(8): 2284-2291. doi: 10.1039/c1em10260e [12] WANG Z Y, GAO S Y, DAI Q Y, et al. Occurrence and risk assessment of psychoactive substances in tap water from China [J]. Environ Pollut, 2020, 261: 114163. doi: 10.1016/j.envpol.2020.114163 [13] BOLEDA M. R, HUERTA-FONTELA M, VENTURA F, et al. Evaluation of the presence of drugs of abuse in tap waters [J]. Chemosphere, 2011, 84(11): 1601-1607. doi: 10.1016/j.chemosphere.2011.05.033 [14] WU M H, XIANG J J, QUE C J, et al. Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China [J]. Chemosphere, 2015, 138: 486-493. doi: 10.1016/j.chemosphere.2015.07.002 [15] YIN X X, GUO C S, TENG Y G, et al. Development and application of the analytical method for illicit drugs and metabolites in fish tissues [J]. Chemosphere, 2019, 233: 532-541. doi: 10.1016/j.chemosphere.2019.06.018 [16] HEYNEN M, BRODIN T, KLAMINDER J, et al. Tissue-specific uptake of the benzodiazepine oxazepam in adult Eurasian perch (Perca fluviatilis) [J]. Environmental Chemistry, 2016, 13(5): 849-853. doi: 10.1071/EN16027 [17] CHEN B B, LU H Y, XU X Z, et al. Simultaneous quantification of cortisol and cortisone in serums and saliva from depressive patients by supported liquid extraction coupled to HPLC–MS/MSs [J]. Acta Chromatographica, 2020, 32(4): 269-275. doi: 10.1556/1326.2020.00733 [18] XU M M, YANG F X. Integrated gender-related effects of profenofos and paclobutrazol on neurotransmitters in mouse [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110085. doi: 10.1016/j.ecoenv.2019.110085 [19] LIAO C Y, KANNAN K. Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography-tandem mass spectrometry [J]. Environmental Science & Technology, 2012, 46(9): 5003-5009. [20] 王春, 顾传坤, 马强, 等. 超分子溶剂分散液液微萃取/超高效液相色谱-串联质谱法测定鱼血中13种硝基咪唑类药物残留 [J]. 分析测试学报, 2019, 38(3): 263-269. WANG C, GU C K, MA Q, et al. Determination of thirteen nitroimidazole residues in fish blood by supramolecular solvent-based dispersive liquid-liquid microextraction / ultra-performance liquid chromatography-tandem mass spectrometry [J]. Journal of Instrumental Analysis, 2019, 38(3): 263-269(in Chinese).
[21] SONG S J, SHAO M W, WANG W H, et al. Development and evaluation of microwave-assisted and ultrasound-assisted methods based on a quick, easy, cheap, effective, rugged, and safe sample preparation approach for the determination of bisphenol analogues in serum and sediments [J]. Journal of Separation Science, 2017, 40(23): 4610-4618. doi: 10.1002/jssc.201700628 [22] 丁锦建, 邓童庆, 徐萌萌, 等. QuEChERS-超高效液相色谱-串联质谱法测定食物中有机磷酸酯阻燃剂 [J]. 环境化学, 2017, 36(10): 2155-2164. doi: 10.7524/j.issn.0254-6108.2017031001 DING J J, DENG T Q, XU M M, et al. Determination of organophosphate ester flame retardants in foodstuffs by QuEChERS and ultra-high performance liquid chromatography coupled with tandem mass spectrometry [J]. Environmental Chemistry, 2017, 36(10): 2155-2164(in Chinese). doi: 10.7524/j.issn.0254-6108.2017031001
[23] 侯琳琳, 邓德华, 李素娟, 等. 环境水体中违禁药物的分析方法 [J]. 环境化学, 2017, 36(6): 1280-1287. HOU L L, DENG D H, LI S J, et al. Analytical methods for illicit drugs in environmental waters [J]. Environmental Chemistry, 2017, 36(6): 1280-1287(in Chinese).
[24] 张力群, 金铨, 刘少颖, 等. 超高效液相色谱-串联质谱法同时检测环境水中5种苯二氮卓类镇静剂药物 [J]. 中国卫生检验杂志, 2018, 28(2): 142-145. ZHANG L Q, JIN Q, LIU S Y, et al. Simultaneous determination of 5 benzodiazepine sedatives in environment water by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Health Laboratory Techinology, 2018, 28(2): 142-145(in Chinese).
[25] 张昕, 张晶, 邵兵. 固相萃取-超高效液相色谱-串联质谱法测定水中5种常用苯二氮卓类药物 [J]. 中国食品卫生杂志, 2017, 29(6): 684-689. ZHANG X, ZHANG J, SHAO B. Determination of five benzodiazepines in water by solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Food Hygiene, 2017, 29(6): 684-689(in Chinese).
[26] 王朝虹, 张琳, 赵蒙, 等. 超高效液相色谱-质谱定量测定全血中的13种苯二氮卓类安眠镇静药物 [J]. 刑事技术, 2016, 41(1): 46-49. WANG C H, ZHANG L, ZHAO M, et al. Simultaneous quantification of thirteen benzodiazepines and metabolites in whole blood by UPLC-MS/MS [J]. Forensic Science and Technology, 2016, 41(1): 46-49(in Chinese).
[27] USEPA. Revised assessment of detection and quantification approaches [R]. EPA-821-B-04-005, 2004. [28] 张彪, 敖沛尧, 靳浩然, 等. SPE-UPLC测定血液中苯二氮卓类药物 [J]. 锦州医科大学学报, 2019, 40(5): 15-17,116-117. ZHANG B, AO P Y, JIN H R, et al. Determination of benzodiazepine in blood by SPE-UPLC [J]. Journal of Jinzhou Medical University, 2019, 40(5): 15-17,116-117(in Chinese).
-