-
塑料因重量轻、化学性质稳定、耐磨损且成本低而被广泛应用于个人护理产品、服装、医药和化学纤维制造等工业中. 据报道,2019年全球塑料产量几乎达到3. 7亿吨[1]. 但塑料使用废弃后回收率只有9%—20%,相当一部分塑料废弃后直接被排放到环境中[2]. 加上其难降解的特点,使得环境中的塑料垃圾不断堆积. 联合国环境规划署已将海洋塑料垃圾污染列为“十大新兴环境问题之一”. 随着时间的推移,塑料会经生物降解、长时间光照或物理磨损等碎裂成微塑料(Microplastics, MPs),即粒径小于5 mm的塑料碎屑. 这一概念是2004年Thompson等[3]在《Science》上首次提出的. MPs按其来源可分为两类:初生MPs,即直接按这一尺寸范围生产的塑料微粒,如个人护理产品或面部清洁剂中的MPs;次生MPs,即通过粉碎较大的塑料或其他高分子聚合物(如人造纤维或汽车轮胎)等产生的微粒[4].
MPs在全球水环境中几乎无处不在[5-7] ,甚至包括深海[8]和极地[9-10]. MPs、生物、环境三者之间相互作用,并具有生态风险[4]. 在水环境中,MPs因被生物体摄入后产生生物累积等效应对生物体产生负面影响,例如对于淡水和海洋生物而言,由于某些MPs的颜色、形状和大小与天然猎物相似[11-12],且其表面的生物膜会对生物体获取的嗅觉信息产生干扰[13],所以增加了水环境中生物体误食MPs的概率. 此外,生物通过鳃呼吸、生物的非选择性过滤[14]以及直接穿透裸露细胞膜等方式摄入MPs[4, 7, 15-18]. 据统计,已在323种海洋鱼类[19]、80种海鸟[20]、6种海龟[21]体内检出了MPs,在其它海洋生物体中MPs也广泛存在,如无脊椎动物[22-23]、海洋哺乳动物等[24-25]. 摄入MPs会对鱼类造成严重的健康影响,包括摄食强度降低、生殖障碍、免疫抑制、生理紊乱以及对鳃、肝脏、肌肉、肾脏、心脏和中枢神经系统的损伤等[26]. MPs还为某些微生物群落的生长提供了基质,使其表面形成生物膜[27],摄入这些颗粒会影响生物体的肠道微生物群,增加被病原微生物的感染的风险. 此外,许多研究者都从水环境中的MPs中检测出了有机污染物(OPs)[28-29]. 诸如多环芳烃(PAHs)、多氯联苯(PCBs)和多溴联苯醚(PBDEs)等. MPs的大比表面积和疏水性促进了其对OPs的吸附[28]. 作为污染物的载体和释放者,MPs可能影响OPs的迁移转化、生物累积和毒性,影响大小取决于这些化合物在MPs上的吸附/解吸动力学和热力学平衡[30]. MPs对生态环境、动物及人体都存在潜在威胁[31]. 图1总结了MPs对生物的毒性效应.
本文综述了MPs与OPs相互作用对OPs在水环境中迁移转化、生物累积性及毒性的影响,并重点讨论了MPs吸附OPs之后形成的复合污染物MPs-OPs的复合毒性.
水环境中微塑料的迁移及其与有机污染物的复合毒性效应研究进展
Migration of microplastics and their combined toxic effects with organic pollutants in water environment: A review
-
摘要: 水环境中的微塑料(MPs)通过吸附和解吸与共存的有机污染物(OPs)相互作用,影响污染物的迁移转化、生物积累、毒性效应等环境行为. 因此,MPs和OPs的生态效应需从它们之间的相互作用角度综合考虑. 本文在查阅近几年相关文献的基础上,重点阐述了水环境中MPs的环境行为及其对OPs迁移转化的影响,讨论了MPs的生态风险及其与OPs的复合毒性效应的影响因素,并得出如下规律:MPs和OPs的特性,如MPs的表面极性和OPs的疏水性决定了MPs作为OPs载体的有效性;MPs的粒径、表面特性、表面生物膜等理化性质影响了水环境中OPs的迁移转化途径和复合物MPs-OPs的毒性效应. 本文以期为进一步评估MPs的环境行为和生态风险提供有益的参考,并为准确评估MPs及其相关OPs的环境风险提出了建议.Abstract: The environmental behaviors of organic pollutants(OPs) such as migration, transformation, bioaccumulation and toxic effects, are affected by microplastics (MPs), which interact with coexisting OPs through adsorption and desorption in water environment. Therefore, the ecological effects of MPs and OPs should be comprehensively considered from the perspective of their interaction. On the basis of consulting the relevant literatures in recent years, the ecological risk of MPs and the influencing factors of the combined toxic effects of MPs and OPs were discussed. And we obtain the following laws: The effectiveness of MPs as OPs’ carrier was determined by the characteristics of MPs and OPs, such as the surface polarity of MPs and the hydrophobicity of OPs; the migration and transformation of OPs and the combined toxicity of MPs-OPs in water environment were affected by the physical and chemical properties of MPs,such as particle size, surface characteristics and surface biofilms. A useful reference for the further assessment of the environmental behavior and ecological risk of MPs was provided by this paper. And some suggestions were put forward for the accurate assessment of the environmental risk of MPs and its related OPs.
-
Key words:
- microplastics /
- migration and transformation /
- ecotoxicology /
- combined toxicity
-
表 1 MPs-OPs复合物在生物体内的复合作用
Table 1. Combined action of MPs-OPs complexes in organism
作用类型
Type of action生物介质
Biological media有机污染物
Organic pollutants微塑料
MPs详情
Details参考文献
References粒径/μm
Particle size类型
Type促进 绿藻类、田螺 外消旋甲基苯丙胺 0.7 PS MPs与外消旋甲基苯丙胺共存时,急性毒性显著增加. [74] 平菇 氧苯酮(BP-3) 11—13 LDPE 复合物暴露7 d后,诱导了氧化应激和损伤, 暴露14 d后还出现了神经毒性效应,即暴露时间越长,遗传毒性越强. [85] 成人血液 石油烃 30 PS PS与石油烃的共存可显著加重石油烃的免疫毒性. [86] 海洋微型藻类 盐酸多西环素、盐酸普鲁卡因胺 1—5 红色荧光聚合物微球* 混合条件下,微藻的平均生长率和叶绿素含量显著下降. [53] 心脏 氯蜱硫磷(CPF) 1.4—42 PE CPF-PE复合物的半数致死浓度(LC50 = 0.26 μg·L−1)低于CPF的半数致死浓度(LC50 = 1.34 μg·L−1). [87] 海洋桡足类 TCS 10—90 PE 添加500 个 mL−1 MPs到TCS中,其LC50明显低于单独TCS的LC50. [88] 海洋青鳉胚胎和幼虫 BaP、全氟辛烷磺酸(PFOS)和二苯甲酮-3 (BP3) 4—6 PE 暴露于MPs-PFOS会降低胚胎存活率并阻止孵化.暴露于MPs-BaP或MPs-BP3的幼虫表现出生长减少、发育异常增加和行为异常.MPs上的BaP和PFOS似乎比单独在海水中更具胚胎毒性. [88] 蛋白核小球藻 TPTCl 0.55、5 PS PS暴露会导致绿藻加速吸收TPTCl,从而提高TPTCl的毒性. [83] 蚯蚓 杜福林农药 40—50 * MPs可以显著增加杜福林在蚯蚓体内的生物累积. [89] 拮抗 大型水蚤 PCB 209 1—5 FMG-1.3* MPs的加入将生物体内的PCB 209含量降低了4倍. [59] 海洋微型藻类 TCS 74、74、74、1 PE、PS、PVC PVC与TCS的复合毒性比PE和PS降低更多. [79] 海洋微型藻类 三苯基锡(TPT) 0.1、5 PS 当添加20 mg·L−1 0.1 μm PS和5 μm PS时,TPT的LC50值分别从
0.56 μg·L−1提高到0.85 μg·L−1和0.71 μg·L−1.[61] 尼罗罗非鱼 罗红霉素 0.1 PS 暴露于混合物14 d后,鱼肝脏的超氧化物歧化酶活性显著升高,丙二醛含量降低,表明肝脏氧化损伤减轻. [56] 斑马鱼仔鱼 6:2氯化聚氟醚磺酸盐(F-53B) 5 PS PS显著促进了F-53B的吸附,降低了F-53B在斑马鱼仔鱼体内的生物利用度和生物蓄积量. [62] G. roeseli PAHs 40—63 PA 含有PA的PAHs的暴露情景显示,在最高浓度下,水样中的菲减少了100%;在最低浓度下,减少了83%. [90] 蛋白核小球藻 邻苯二甲酸二丁酯 0.1、0.55、5 PE 20 mg·L−1 PS可使邻苯二甲酸二丁酯的生物利用度降低20%以上. [84] 受精卵 菲 10 PS 2 μg·L−1MPs和菲复合暴露可将孵化率提高25.8%, 降低畸形率和死亡率, 恢复菲引起的心脏发育相关基因的异常表达. [77] 无影响 受精卵 菲 10 PS 20、200 μg·L−1 MPs不会改变菲的毒性. [77] 蓝贻贝 荧蒽 1 PE 共暴露处理中, MPs的存在没有显著影响鳃和消化腺对荧蒽的吸收. [65] 挪威龙虾 PCB 28, 52, 101, 118, 138, 153, 180, 500—600 PE、PS 复合物不会导致微生物中化学物质的显著生物积累. [67] 注:*为未确定的MPs类型 -
[1] Plastics-the facts[EB/OL]. [2020-6-21]. https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020. [2] 栾晓玉. 基于物质流分析的中国塑料资源代谢研究[D]. 济南: 山东大学, 2020. LUAN X Y. The research of plastics metabolic process based on material flow analysis in China[D]. Jinan: Shandong University, 2020(in Chinese).
[3] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [4] HUANG D L, TAO J X, CHENG M, et al. Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures [J]. Journal of Hazardous Materials, 2021, 407: 124399. doi: 10.1016/j.jhazmat.2020.124399 [5] PAN Z, SUN Y, LIU Q L, et al. Riverine microplastic pollution matters: A case study in the Zhangjiang River of Southeastern China [J]. Marine Pollution Bulletin, 2020, 159: 111516. doi: 10.1016/j.marpolbul.2020.111516 [6] SCHERER C, WEBER A, STOCK F, et al. Comparative assessment of microplastics in water and sediment of a large European river [J]. Science of the Total Environment, 2020, 738: 139866. doi: 10.1016/j.scitotenv.2020.139866 [7] EARN A, BUCCI K, ROCHMAN C M. A systematic review of the literature on plastic pollution in the Laurentian Great Lakes and its effects on freshwater biota [J]. Journal of Great Lakes Research, 2021, 47(1): 120-133. doi: 10.1016/j.jglr.2020.11.001 [8] XU L L, CAO L, HUANG W, et al. Assessment of plastic pollution in the Bohai Sea: Abundance, distribution, morphological characteristics and chemical components [J]. Environmental Pollution, 2021, 278: 116874. doi: 10.1016/j.envpol.2021.116874 [9] KANHAI L D K, GARDFELDT K, KRUMPEN T, et al. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean [J]. Scientific Reports, 2020, 10: 5004. doi: 10.1038/s41598-020-61948-6 [10] SUARIA G, PEROLD V, LEE J R, et al. Floating macro- and microplastics around the southern ocean: Results from the Antarctic circumnavigation expedition [J]. Environment International, 2020, 136: 105494. doi: 10.1016/j.envint.2020.105494 [11] BARBOZA L G A, LOPES C, OLIVEIRA P, et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure [J]. Science of the Total Environment, 2020, 717: 134625. doi: 10.1016/j.scitotenv.2019.134625 [12] ORY N C, SOBRAL P, FERREIRA J L, et al. Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the Coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre [J]. Science of the Total Environment, 2017, 586: 430-437. doi: 10.1016/j.scitotenv.2017.01.175 [13] SAVOCA M S, WOHLFEIL M E, EBELER S E, et al. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds [J]. Science Advances, 2016, 2(11): 1600395. doi: 10.1126/sciadv.1600395 [14] COLE M, LINDEQUE P, FILEMAN E, et al. Microplastic ingestion by zooplankton [J]. Environmental Science & Technology, 2013, 47(12): 6646-6655. [15] PETERSEN F, HUBBART J A. The occurrence and transport of microplastics: The state of the science [J]. Science of the Total Environment, 2021, 758: 143936. doi: 10.1016/j.scitotenv.2020.143936 [16] WANG C H, ZHAO J, XING B S. Environmental source, fate, and toxicity of microplastics [J]. Journal of Hazardous Materials, 2021, 407: 124357. doi: 10.1016/j.jhazmat.2020.124357 [17] CHEN G L, LI Y Z, WANG J. Occurrence and ecological impact of microplastics in aquaculture ecosystems [J]. Chemosphere, 2021, 274: 129989. doi: 10.1016/j.chemosphere.2021.129989 [18] SIGNA G, MAZZOLA A, VIZZINI S. Seabird influence on ecological processes in coastal marine ecosystems: An overlooked role?A critical review [J]. Estuarine, Coastal and Shelf Science, 2021, 250: 107164. doi: 10.1016/j.ecss.2020.107164 [19] MARKIC A, GAERTNER J C, GAERTNER-MAZOUNI N, et al. Plastic ingestion by marine fish in the wild [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(7): 657-697. doi: 10.1080/10643389.2019.1631990 [20] WILCOX C, van SEBILLE E, HARDESTY B D. Threat of plastic pollution to seabirds is global, pervasive, and increasing [J]. PNAS, 2015, 112(38): 11899-11904. doi: 10.1073/pnas.1502108112 [21] SCHUYLER Q, HARDESTY B D, WILCOX C, et al. Global analysis of anthropogenic debris ingestion by sea turtles [J]. Conservation Biology, 2014, 28(1): 129-139. doi: 10.1111/cobi.12126 [22] SPARKS C. Microplastics in mussels along the Coast of cape town, south Africa [J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 423-431. doi: 10.1007/s00128-020-02809-w [23] XU X Y, WONG C Y, TAM N F Y, et al. Microplastics in invertebrates on soft Shores in Hong Kong: Influence of habitat, taxa and feeding mode [J]. Science of the Total Environment, 2020, 715: 136999. doi: 10.1016/j.scitotenv.2020.136999 [24] MOORE R C, LOSETO L, NOEL M, et al. Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea [J]. Marine Pollution Bulletin, 2020, 150: 110723. doi: 10.1016/j.marpolbul.2019.110723 [25] HERNANDEZ-GONZALEZ A, SAAVEDRA C, GAGO J, et al. Microplastics in the stomach contents of common dolphin (Delphinus delphis) stranded on the Galician coasts (NW Spain, 2005-2010) [J]. Marine Pollution Bulletin, 2018, 137: 526-532. doi: 10.1016/j.marpolbul.2018.10.026 [26] VÁZQUEZ-ROWE I, ITA-NAGY D, KAHHAT R. Microplastics in fisheries and aquaculture: Implications to food sustainability and safety [J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29: 100464. doi: 10.1016/j.cogsc.2021.100464 [27] CHEN Y L, LI T C, HU H J, et al. Transport and fate of microplastics in constructed wetlands: A microcosm study [J]. Journal of Hazardous Materials, 2021, 415: 125615. doi: 10.1016/j.jhazmat.2021.125615 [28] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. [29] BARLETTA M, LIMA A R A, COSTA M F. Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries [J]. Science of the Total Environment, 2019, 651: 1199-1218. doi: 10.1016/j.scitotenv.2018.09.276 [30] KOELMANS A A, BESSELING E, WEGNER A, et al. Plastic as a carrier of POPs to aquatic organisms: A model analysis [J]. Environmental Science & Technology, 2013, 47(14): 7812-7820. [31] 刘沙沙, 付建平, 郭楚玲, 等. 微塑料的环境行为及其生态毒性研究进展 [J]. 农业环境科学学报, 2019, 38(5): 957-969. LIU S S, FU J P, GUO C L, et al. Research progress on environmental behavior and ecological toxicity of microplastics [J]. Journal of Agro-Environment Science, 2019, 38(5): 957-969(in Chinese).
[32] KUMAR R, SHARMA P, MANNA C, et al. Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review [J]. Science of the Total Environment, 2021, 782: 146695. doi: 10.1016/j.scitotenv.2021.146695 [33] JĘDRUCHNIEWICZ K, OK Y S, OLESZCZUK P. COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment [J]. Journal of Hazardous Materials, 2021, 417: 125938. doi: 10.1016/j.jhazmat.2021.125938 [34] GIANICO A, BRAGUGLIA C, GALLIPOLI A, et al. Land application of biosolids in Europe: Possibilities, con-straints and future perspectives [J]. Water, 2021, 13(1): 103. doi: 10.3390/w13010103 [35] XIA W L, RAO Q Y, DENG X W, et al. Rainfall is a significant environmental factor of microplastic pollution in inland waters [J]. Science of the Total Environment, 2020, 732: 139065. doi: 10.1016/j.scitotenv.2020.139065 [36] de LEO A, CUTRONEO L, SOUS D, et al. Settling velocity of microplastics exposed to wave action [J]. Journal of Marine Science and Engineering, 2021, 9(2): 142. doi: 10.3390/jmse9020142 [37] HARRIS P T. The fate of microplastic in marine sedimentary environments: A review and synthesis [J]. Marine Pollution Bulletin, 2020, 158: 111398. doi: 10.1016/j.marpolbul.2020.111398 [38] DU S, ZHU R W, CAI Y J, et al. Environmental fate and impacts of microplastics in aquatic ecosystems: A review [J]. RSC Advances, 2021, 11(26): 15762-15784. doi: 10.1039/D1RA00880C [39] RIOS MENDOZA L M, JONES P R. Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre [J]. Environmental Chemistry, 2015, 12(5): 611. doi: 10.1071/EN14236 [40] TALLEC K, BLARD O, GONZÁLEZ-FERNÁNDEZ C, et al. Surface functionalization determines behavior of nanoplastic solutions in model aquatic environments [J]. Chemosphere, 2019, 225: 639-646. doi: 10.1016/j.chemosphere.2019.03.077 [41] HÜFFER T, PRAETORIUS A, WAGNER S, et al. Microplastic exposure assessment in aquatic environments: Learning from similarities and differences to engineered nanoparticles [J]. Environmental Science & Technology, 2017, 51(5): 2499-2507. [42] LI S C, LIU H, GAO R, et al. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter [J]. Environmental Pollution, 2018, 237: 126-132. doi: 10.1016/j.envpol.2018.02.042 [43] MA Y N, HUANG A N, CAO S Q, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water [J]. Environmental Pollution, 2016, 219: 166-173. doi: 10.1016/j.envpol.2016.10.061 [44] BRYANT J A, CLEMENTE T M, VIVIANI D A, et al. Diversity and activity of communities inhabiting plastic debris in the north Pacific gyre [J]. mSystems, 2016, 1(3): e00024-16. doi: 10.1128/msystems.00024-16 [45] OBERBECKMANN S, KREIKEMEYER B, LABRENZ M. Environmental factors support the formation of specific bacterial assemblages on microplastics [J]. Frontiers in Microbiology, 2017, 8: 2709. [46] OBERBECKMANN S, LOEDER M G J, GERDTS G, et al. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters [J]. FEMS Microbiology Ecology, 2014, 90(2): 478-492. doi: 10.1111/1574-6941.12409 [47] MERCIER A, GRAVOUIL K, AUCHER W, et al. Fate of eight different polymers under uncontrolled composting conditions: Relationships between deterioration, biofilm formation, and the material surface properties [J]. Environmental Science & Technology, 2017, 51(4): 1988-1997. [48] YOUSIF E, HADDAD R. Photodegradation and photostabilization of polymers, especially polystyrene: Review [J]. SpringerPlus, 2013, 2(1): 1-32. doi: 10.1186/2193-1801-2-1 [49] ZHU K C, JIA H Z, ZHAO S, et al. Formation of environmentally persistent free radicals on microplastics under light irradiation [J]. Environmental Science & Technology, 2019, 53(14): 8177-8186. [50] SHEN J J, STEINBACH R, TOBIN J M, et al. Photoactive and metal-free polyamide-based polymers for water and wastewater treatment under visible light irradiation [J]. Applied Catalysis B:Environmental, 2016, 193: 226-233. doi: 10.1016/j.apcatb.2016.04.015 [51] PRATA J C, LAVORANTE B R B O, B S M MONTENEGRO M D C, et al. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii [J]. Aquatic Toxicology, 2018, 197: 143-152. doi: 10.1016/j.aquatox.2018.02.015 [52] OEHLMANN J, SCHULTE-OEHLMANN U, KLOAS W, et al. A critical analysis of the biological impacts of plasticizers on wildlife [J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2009, 364(1526): 2047-2062. doi: 10.1098/rstb.2008.0242 [53] YU Y J, MA R X, QU H, et al. Enhanced adsorption of tetrabromobisphenol a (TBBPA) on cosmetic-derived plastic microbeads and combined effects on zebrafish [J]. Chemosphere, 2020, 248: 126067. doi: 10.1016/j.chemosphere.2020.126067 [54] ZHANG S S, DING J N, RAZANAJATOVO R M, et al. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus) [J]. Science of the Total Environment, 2019, 648: 1431-1439. doi: 10.1016/j.scitotenv.2018.08.266 [55] BOUHROUM R, BOULKAMH A, ASIA L, et al. Concentrations and fingerprints of PAHs and PCBs adsorbed onto marine plastic debris from the Indonesian Cilacap Coast and theNorth Atlantic gyre [J]. Regional Studies in Marine Science, 2019, 29: 100611. doi: 10.1016/j.rsma.2019.100611 [56] TAN X L, YU X B, CAI L Q, et al. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China [J]. Chemosphere, 2019, 221: 834-840. doi: 10.1016/j.chemosphere.2019.01.022 [57] KOELMANS A A, BAKIR A, BURTON G A, et al. Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies [J]. Environmental Science & Technology, 2016, 50(7): 3315-3326. [58] MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment [J]. Environmental Science & Technology, 2001, 35(2): 318-324. [59] GERDES Z, OGONOWSKI M, NYBOM I, et al. Microplastic-mediated transport of PCBs?A depuration study with Daphnia magna [J]. PLoS One, 2019, 14(2): e0205378. doi: 10.1371/journal.pone.0205378 [60] GUO Y H, MA W, LI J J, et al. Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom, Phaeodactylum tricornutum [J]. Environmental Pollution, 2020, 257: 113628. doi: 10.1016/j.envpol.2019.113628 [61] YI X L, WANG J F, LI Z C, et al. The effect of polystyrene plastics on the toxicity of triphenyltin to the marine diatom Skeletonema costatum—influence of plastic particle size [J]. Environmental Science and Pollution Research, 2019, 26(25): 25445-25451. doi: 10.1007/s11356-019-05826-3 [62] YANG H L, LAI H, HUANG J, et al. Polystyrene microplastics decrease F-53B bioaccumulation but induce inflammatory stress in larval zebrafish [J]. Chemosphere, 2020, 255: 127040. doi: 10.1016/j.chemosphere.2020.127040 [63] MOHAMED NOR N H, KOELMANS A A. Transfer of PCBs from microplastics under simulated gut fluid conditions is biphasic and reversible [J]. Environmental Science & Technology, 2019, 53(4): 1874-1883. [64] SØRENSEN L, ROGERS E, ALTIN D, et al. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions [J]. Environmental Pollution, 2020, 258: 113844. doi: 10.1016/j.envpol.2019.113844 [65] MAGARA G, ELIA A C, SYBERG K, et al. Single contaminant and combined exposures of polyethylene microplastics and fluoranthene: Accumulation and oxidative stress response in the blue mussel, Mytilus edulis [J]. Journal of Toxicology and Environmental Health, Part A, 2018, 81(16): 761-773. doi: 10.1080/15287394.2018.1488639 [66] BEIRAS R, MUNIATEGUI-LORENZO S, RODIL R, et al. Polyethylene microplastics do not increase bioaccumulation or toxicity of nonylphenol and 4-MBC to marine zooplankton [J]. Science of the Total Environment, 2019, 692: 1-9. doi: 10.1016/j.scitotenv.2019.07.106 [67] DEVRIESE L I, de WITTE B, VETHAAK A D, et al. Bioaccumulation of PCBs from microplastics in Norway lobster (Nephrops norvegicus): An experimental study [J]. Chemosphere, 2017, 186: 10-16. doi: 10.1016/j.chemosphere.2017.07.121 [68] 刘芃岩, 孙启智, 刘璐, 等. 微塑料环境赋存及其与有机污染物的作用机理研究进展 [J]. 中国科学:化学, 2021, 51(9): 1206-1216. doi: 10.1360/SSC-2021-0139 LIU P Y, SUN Q Z, LIU L, et al. Research progress on environmental occurrence of microplastics and their interaction mechanism with organic pollutants [J]. Scientia Sinica (Chimica), 2021, 51(9): 1206-1216(in Chinese). doi: 10.1360/SSC-2021-0139
[69] TANAKA K, TAKADA H, YAMASHITA R, et al. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics [J]. Marine Pollution Bulletin, 2013, 69(1/2): 219-222. [70] ZHANG Y, PU S Y, LV X, et al. Global trends and prospects in microplastics research: A bibliometric analysis [J]. Journal of Hazardous Materials, 2020, 400: 123110. doi: 10.1016/j.jhazmat.2020.123110 [71] BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity [J]. Current Biology, 2013, 23(23): 2388-2392. doi: 10.1016/j.cub.2013.10.012 [72] JANG M, SHIM W J, HAN G M, et al. Styrofoam debris as a source of hazardous additives for marine organisms [J]. Environmental Science & Technology, 2016, 50(10): 4951-4960. [73] BATEL A, BORCHERT F, REINWALD H, et al. Microplastic accumulation patterns and transfer of benzo[a]Pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos [J]. Environmental Pollution, 2018, 235: 918-930. doi: 10.1016/j.envpol.2018.01.028 [74] QU H, MA R X, BARRETT H, et al. How microplastics affect chiral illicit drug methamphetamine in aquatic food chain?From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis) [J]. Environment International, 2020, 136: 105480. doi: 10.1016/j.envint.2020.105480 [75] RAHMAN A, SARKAR A, YADAV O P, et al. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review [J]. Science of the Total Environment, 2021, 757: 143872. doi: 10.1016/j.scitotenv.2020.143872 [76] PAUL-PONT I, LACROIX C, GONZÁLEZ FERNÁNDEZ C, et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation [J]. Environmental Pollution, 2016, 216: 724-737. doi: 10.1016/j.envpol.2016.06.039 [77] LI Y J, WANG J, YANG G X, et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma) [J]. Journal of Hazardous Materials, 2020, 385: 121586. doi: 10.1016/j.jhazmat.2019.121586 [78] LIU S Q, WANG J W, ZHU J H, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings [J]. Chemosphere, 2021, 282: 130967. doi: 10.1016/j.chemosphere.2021.130967 [79] ZHU Z L, WANG S C, ZHAO F F, et al. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum [J]. Environmental Pollution, 2019, 246: 509-517. doi: 10.1016/j.envpol.2018.12.044 [80] ZHOU L L, WANG T C, QU G Z, et al. Probing the aging processes and mechanisms of microplastic under simulated multiple actions generated by discharge plasma [J]. Journal of Hazardous Materials, 2020, 398: 122956. doi: 10.1016/j.jhazmat.2020.122956 [81] PFLUGMACHER S, TALLINEN S, KIM Y J, et al. Ageing affects microplastic toxicity over time: Effects of aged polycarbonate on germination, growth, and oxidative stress of Lepidium sativum [J]. Science of the Total Environment, 2021, 790: 148166. doi: 10.1016/j.scitotenv.2021.148166 [82] LI C, LIU J, WANG D J, et al. Electrostatic attraction of cationic pollutants by microplastics reduces their joint cytotoxicity [J]. Chemosphere, 2021, 282: 131121. doi: 10.1016/j.chemosphere.2021.131121 [83] le BIHANIC F, CLÉRANDEAU C, CORMIER B, et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development [J]. Marine Pollution Bulletin, 2020, 154: 111059. doi: 10.1016/j.marpolbul.2020.111059 [84] LI Z C, YI X L, ZHOU H, et al. Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa [J]. Environmental Pollution, 2020, 257: 113604. doi: 10.1016/j.envpol.2019.113604 [85] O'DONOVAN S, MESTRE N C, ABEL S, et al. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana [J]. Science of the Total Environment, 2020, 733: 139102. doi: 10.1016/j.scitotenv.2020.139102 [86] SUN S G, SHI W, TANG Y, et al. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms [J]. Science of the Total Environment, 2020, 728: 138852. doi: 10.1016/j.scitotenv.2020.138852 [87] BELLAS J, GIL I. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa [J]. Environmental Pollution, 2020, 260: 114059. doi: 10.1016/j.envpol.2020.114059 [88] SYBERG K, NIELSEN A, KHAN F R, et al. Microplastic potentiates triclosan toxicity to the marine copepod Acartia tonsa (Dana) [J]. Journal of Toxicology and Environmental Health, Part A, 2017, 80(23/24): 1369-1371. [89] SUN W, MENG Z Y, LI R S, et al. Joint effects of microplastic and dufulin on bioaccumulation, oxidative stress and metabolic profile of the earthworm (Eisenia fetida) [J]. Chemosphere, 2021, 263: 128171. doi: 10.1016/j.chemosphere.2020.128171 [90] BARTONITZ A, ANYANWU I N, GEIST J, et al. Modulation of PAH toxicity on the freshwater organism G. roeseli by microparticles [J]. Environmental Pollution, 2020, 260: 113999. doi: 10.1016/j.envpol.2020.113999 [91] CARBERY M, O'CONNOR W, PALANISAMI T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health [J]. Environment International, 2018, 115: 400-409. doi: 10.1016/j.envint.2018.03.007 [92] 刘全斌. 微塑料在我国渤、黄海浮游动物体内的分布特征及其生物富集和排出过程研究[D]. 大连: 大连海事大学, 2020. LIU Q B. Distribution of microplastics and their uptake and elimination in zooplankton in the bo sea and the Yellow Sea[D]. Dalian, China: Dalian Maritime University, 2020(in Chinese).
[93] VÁZQUEZ O A, RAHMAN M S. An ecotoxicological approach to microplastics on terrestrial and aquatic organisms: A systematic review in assessment, monitoring and biological impact [J]. Environmental Toxicology and Pharmacology, 2021, 84: 103615. doi: 10.1016/j.etap.2021.103615 [94] KIRSTEIN I V, KIRMIZI S, WICHELS A, et al. Dangerous hitchhikers?Evidence for potentially pathogenic Vibrio spp. on microplastic particles [J]. Marine Environmental Research, 2016, 120: 1-8. doi: 10.1016/j.marenvres.2016.07.004 [95] ZARUS G M, MUIANGA C, HUNTER C M, et al. A review of data for quantifying human exposures to micro and nanoplastics and potential health risks [J]. Science of the Total Environment, 2021, 756: 144010. doi: 10.1016/j.scitotenv.2020.144010 [96] REVEL M, CHÂTEL A, MOUNEYRAC C. Micro(nano)plastics: A threat to human health? [J]. Current Opinion in Environmental Science & Health, 2018, 1: 17-23.