-
溴代阻燃剂是一类包括脂肪族、脂环族、芳香族及芳香-脂肪族的含溴化合物.其中脂环族溴代阻燃剂(cycloaliphatic brominated flame retardants, CBFRs)的阻燃效果好于芳香族溴代阻燃剂,热稳定性能优于脂肪族溴代阻燃剂,而一度作为多溴联苯醚(PBDEs)的替代品被广泛应用于纺织、建材、电子、电气、交通、化工、石油等领域中[1].脂环族溴代阻燃剂主要包括六溴环十二烷(hexabromocyclododecane,HBCD),1,2-二溴-4-(1,2-二溴乙基)-环己烷(tetrabromoethylcyclohexane,TBECH),和1,2,5,6-四溴环辛烷(1,2,5,6-Tetrabromocyclooctane,TBCO). 目前关于CBFRs研究最多的是六溴环十二烷,其作为全球第三大溴系阻燃剂,在生产、使用、运输及废弃物报废处理等过程进入环境.迄今为止,人们已经在许多环境介质、生物体如鸟类[2]、水生动物[3-4]、植物[5-6]、人体[7],甚至在遥远的北极圈的生物体[8]内都检测到HBCD. 随着HBCD增列《关于持久性有机污染物的斯德哥尔摩公约》持久性有机污染物,其生产和使用受到限制,人们会选择TBECH和TBCO这样结构和性质相似、但知名度较低、认识尚不深入的溴代阻燃剂.虽然目前TBECH、TBCO的产量远低于HBCD,但可以预见在不远的未来,这类阻燃剂的产量、使用量将会上升,从而导致其环境水平的增加[9-10],因此有必要充分认识这类阻燃剂的环境和生态效应[11-16]. TBECH、TBCO和HBCD一样,具有溴代的脂环结构,包含多种异构体和对映体(图1),但碳环数、溴取代数、取代位置、空间结构存在差异.表1展示了HBCD、TBECH、TBCO的理化性质,其中部分参数来自EPI Suite和SPARC软件的计算. 相比HBCD,TBECH和TBCO的分子量较小,熔点较低,稳定性较差;蒸气压和溶解度都较高,说明两者的挥发性和水溶性更大;lgKow都大于4,说明三者同样具有较强的亲脂特性和生物蓄积潜力.三者结构和性质的异同对它们的生物富集、代谢及毒性效应的影响尚不清楚. 研究表明,异构体的生物富集、代谢及毒性效应均存在显著差异[13, 17-22].只有在异构体水平进行研究,才能全面准确地对CBRFs的生态和健康风险做出评价.
本文对HBCD、TBECH、TBCO及其异构体的生物富集、代谢及毒性效应进行综述,并预测了这3种污染物的研究趋势.
脂环族溴代阻燃剂的生物富集、代谢及毒性效应研究进展
Research progress on bioconcentration, metabolism and toxicity of cycloaliphatic brominated flame retardant isomers
-
摘要: 以六溴环十二烷(HBCD)为代表的脂环族溴代阻燃剂(CBFRs)被广泛应用于纺织、建材、电子、电气、化工、交通、建材等领域.随着HBCD作为《关于持久性有机污染物的斯德哥尔摩公约》增列持久性有机污染物,与HBCD具有相似结构和性能的四溴环己烷(TBECH)和四溴环辛烷(TBCO)等CBFRs被当作HBCD的潜在替代产品.迄今为止,HBCD、TBECH和TBCO已在大气、水体、土壤等多种环境介质和生物体中被检出,它们在生物体内的代谢转化以及内分泌干扰、神经、生殖、发育等毒性效应亦受到广泛关注.值得指出的是,所有CBFRs均含有同分异构体,表现出异构体选择性的生物富集、代谢和毒性效应.遗憾的是,目前相关研究还十分匮乏.本文从CBFRs的环境暴露水平、生物富集、毒性效应、以及CBFRs的生物转化等方面展开综述,特别强调了从异构体水平研究HBCD及其替代物的必要性.本文有助于全面了解CBFRs生物富集、代谢及毒性效应,对于正确认识和准确评价CBFRs的生态和健康风险具有重要的科学意义.Abstract: Cycloaliphatic brominated flame retardants (CBFRs), represented by hexabromocyclododecane (HBCD) are widely used in textile, building materials, electronics, electrical, chemical, transportation, building materials and other fields. With the addition of HBCD in the “Stockholm Convention on Persistent Organic Pollutants” as persistent organic pollutants, other types of CBFRs, such as tetrabromocyclohexane (TBECH) and 1,2,5,6-Tetrabromocyclooctane (TBCO), with similar structure and performance to HBCD are regarded as potential substitutes for HBCD. So far, HBCD, TBECH and TBCO have been detected in the atmosphere, water, soil and other environmental media and organisms. Their metabolic transformation in organisms, endocrine interference, nerves, reproduction, development and other toxic effects have been drawn much attention. It should be mentioned that all CBFRs contain isomers, showing isomer-selective bioaccumulation, metabolism, and toxicity. Unfortunately, research at the level of isomers is scarce. In this article, the environmental exposure level, bioconcentration, biotransformation and toxic effects of CBFRs have been reviewed, and the necessity of studying HBCD and its substitutes at the level of isomers has been emphasized. This article helps to fully understand the bioaccumulation, metabolism and toxic effects of CBFRs, which has important scientific significance for the correct understanding and accurate evaluation of the ecological and health risks of CBFRs.
-
表 1 HBCD、TBECH、TBCO的理化性质
Table 1. The physical and chemical properties of HBCD, TBECH and TBCO
化合物
Compound分子式
Molecular formula分子量
Molecular weight熔点/℃
Melting point蒸汽压/Pa(21℃)
Vapor pressure溶解度/(μg·L−1)
Solubility稳定性
StabilitylgKow
(25 ℃)tHBCD C12H18Br6 641.7 175—195[23] 7.23×10−7[24] 65.6
(20 ℃) [24]160 ℃
重排
240 ℃
脱溴5.77[25] tTBECH C8H12Br4 427.8 70—77 1.40×10−2 a[26] 69.2a 123 ℃ 5.24a[26] 2.31×10−3 b 2420b 重排[27] 4.41b tTBCO C8H12Br4 427.8 102—124[28] 9.43×10−3 a 69.2a 123 ℃ 5.24a 2.13×10−3 b 2640b 重排[27] 4.37b 注:a. EPI Suite计算的理化性质;b. SPARC计算的理化性质.
Note: a. Physical and chemical properties calculated by EPI Suite; b. Physical and chemical properties calculated by SPARC.表 2 污染源区HBCD的浓度
Table 2. Concentration of HBCD in the pollution source area
地区
Area环境介质
Environmental mediumHBCD浓度
HBCD concentration参考文献
Reference天津聚苯乙烯生产厂 粉尘 328—31752 ng·g−1 dw [30] 土壤 2.19—1730 ng·g−1 dw 沉积物 23.5—716 ng·g−1 dw 中国华北塑料垃圾处理区 土壤 11.0—6240 ng·g−1 [5] 中国渤海附近HBCD生产企业 土壤 4.20—11700 ng·g−1 [32] 沉积物 1.52—6740 ng·g−1 水 3.28—5080 ng·L−1 中国香港污水处理厂 水 13.6—45.4 ng·L−1 [31] 污泥 108—402 ng·g−1 dw 捷克源区 土壤 (15.0 ± 35.5 )ng·g−1 [33] 沉积物 (2.59 ± 3.22) ng·g−1 仓库大气 (1960±1060) ng·m−3 仓外大气 (53.9±17.3) ng·m−3 消费产品、建造材料 (65±505) μg·g−1 室内空气 (4.30 ± 4.96) pg·m−3 室外背景空气 (3.83 ± 5.25) pg·m−3 注:dw,dry weight. 干重. Note: dw, dry weight. Dry weight. 表 3 大气、水、土壤等环境介质中HBCD的浓度
Table 3. Concentration of HBCD in environmental media such as air, water and soil
地区
Area环境介质
Environmental mediumHBCD浓度
HBCD concentration参考文献
Reference英国西米德兰兹 大气 100 pg·m−3 [34] 法国巴黎 大气 16—58 pg·m−3 [35] 瑞典斯德哥尔摩 室内灰尘 190 ng·g−1 [36] 室内空气 3.1 pg·m−3 室外空气 0.066 pg·m−3 中国大连 大气 15.47—43.57 pg·m−3 [37] 中国深圳 室内大气颗粒相 31.6—94.1 pg·m−3 [38] 室外大气颗粒相 5.36 pg·m−3 中国天津大沽河 水体沉积物 83.7 ng·g−1dw [41] 中国天津港 水体沉积物 60.8 ng·g−1 dw [41] 中国长江 水体沉积物 23.28 ng·g−1 dw [44] 韩国工业园区附近湖泊 水体沉积物 143 ng·g−1dw [40] 中国贵屿连河 水体沉积物 117 ng·g−1dw [42] 日本九头龙河 水体沉积物 1527 ng·g−1dw [43] 东江和珠江口 水体沉积物 64.7 ng·g−1 dw [45] 渤海南部海域 水 3.28—5080 ng·L−1 [32] 中国宁波的垃圾填埋场 废物倾卸场地土壤 60.74 ng·g−1 dw [48] 工业区土壤 37.9 ng·g−1 dw 交通区土壤 31.8 ng·g−1 dw 居民区土壤 14.1 ng·g−1 dw 菜地土壤 11.0 ng·g−1 dw 农田土壤 7.75 ng·g−1dw 中国广东 清远土壤 106 ng·g−1 dw [49] 工业区土壤 0.31—9.99·ng·g−1 dw 电子废物回收站土壤 0.22—2.34 ng·g−1 dw 表 4 大气、水、土壤等环境介质中TBECH的浓度
Table 4. Concentration of TBECH in environmental media such as air, water and soil
地区
Area环境介质
Environmental mediumTBECH浓度
TBECH concentration参考文献
Reference挪威 家庭空气 77.9 pg·m−3 [56] 教室空气 46.6 pg·m−3 英国 家庭空气 173 pg·m−3 办公室空气 320 pg·m−3 家庭灰尘 21.4 ng·g−1 办公室灰尘 41 ng·g−1 意大利罗马 室内灰尘 33.7—228 ng·g-1 [57] 美国加利福尼亚州 室内灰尘 <0.64—360 ng·g-1 [58] 瑞典斯德哥尔摩 室内大气 43 pg·m−3 [36] 室外大气 0.48 pg·m−3 室内灰尘 0.9 ng·g−1 捷克 室内大气 100 pg·m−3 [59] 英国西米德兰兹 室外大气 2.5—9.3 pg·m−3 [34] 中国北方电子垃圾回收区 室外大气 39.5 pg·m−3 [61] 水 0.423—0.710 ng·L−1 土壤 0.0486—0.309 ng·g−1·dw 中国香港水域 地表沉积物 <0.5—5.10 ng·g−1·dw [67] 中国香港污水处理厂 废水 1.47—3.33 ng·L−1 [31] 污泥 13.2—23.5 ng·g−1·dw 新加坡 地表水 0.099—0.47 ng·L−1 [68] 悬浮沉积物 3.86—4.65 ng·g−1·dw 表 5 HBCD在不同生物中的异构体转化
Table 5. Transformation of HBCD isomers in different biological samples
生物样本
Biological samples转化现象
Transformations参考文献
Reference大鼠 γ-HBCD异构化为α-HBCD [101] 母鸡 [2] 斑马鱼 [87] 镜鲤、蚯蚓 — [100] 大鼠 β-HBCD异构化为γ-HBCD [104] 大鼠肝脏和脑组织 γ-HBCD异构化为β-HBCD [102] 大鼠脂肪组织和粪便 γ-HBCD异构化为α-和β-HBCD [102] 母鸡肝脏 [103] 虹鳟鱼幼体 β-、γ-HBCD异构化为α-HBCD [89] 镜鲤 [76] 蚯蚓 [84, 90] 雄性大鼠 [88] 小麦 [81] 黑麦草 [82] 玉米根 β-和γ-HBCD异构化为α-HBCD;β-HBCD和γ-HBCD相互转化 [6] 注:—表示无转化现象. Note: —indicates no transformation. 表 6 HBCD异构体在鼠中的代谢产物
Table 6. Metabolites of diastereomers of HBCD in mice
污染物
Pollution种类
Species代谢产物
Metabolites参考文献
Referenceα-HBCD Sprague–Dawley OH-HBCD、OH-HBCDee [88] α-HBCD C57BL/6 OH-HBCD、谷胱甘肽复合物 [110] β-HBCD Sprague–Dawley OH-HBCD、tri-OH-HBCD、PBCDe、dithio-TeBCDe [88] di-OH-triBCDeee、巯基二溴甲基酯 γ-HBCD Sprague–Dawley OH-HBCD、PBCDe、OH-TeBCDe、OH-PBCD [88] OH-PBCDe、DiOH-PBCDe、Dithio-PBCD 四溴二烷二羧酸 γ-HBCD C57BL/6 OH-PBCD、OH-PBCDe、DiOH-PBCDe、diOH-PBCDee [110] 六溴十二烷二酸、三溴壬烯酸 三溴硝基苯甲酸甲硫醇酯、四甲硫醇酯 表 7 HBCD异构体在菌株中的代谢转化产物
Table 7. Metabolites of HBCD isomers in microorganisms
菌株
Strain代谢产物
Metabolites参考文献
ReferenceDehalococcoides mccartyi菌株195 TBCD、DBCD、CDT [118] Pseudomonas aeruginosa HS9假单胞菌 TBCDe、DBCDi、CDT、ECDD、PBCDOHs [114] Bacillus HBCD-sjtu菌株 CDT、CDD、环十二碳烯、3,9-十二碳烯 [115] Rhodopseudomonas palustrisYSC3菌株 PBCDOHs、PBCDEs [112] Sphingobium chinhatense菌株IP26 PeBCD-ols、TeBCD-diols、TrBCD-triols [113] Pseudomonas sp.菌株GJY PBCD-ols、PBCD-diols、TrBCD-triols、DBCDe-diols、DBDe-dicarboxyl [19] -
[1] 陈海, 孙云娜, 魏东洋. 溴代阻燃剂的环境危害 [J]. 广东化工, 2011, 38(8): 91-92. doi: 10.3969/j.issn.1007-1865.2011.08.045 CHEN H, SUN Y N, WEI D Y. Bromination flame retardants environmental damage [J]. Guangdong Chemical Industry, 2011, 38(8): 91-92(in Chinese). doi: 10.3969/j.issn.1007-1865.2011.08.045
[2] FOURNIER A, FEIDT C, MARCHAND P, et al. Kinetic study of γ-hexabromocyclododecane orally given to laying hens (Gallus domesticus) [J]. Environmental Science and Pollution Research, 2012, 19(2): 440-447. doi: 10.1007/s11356-011-0573-6 [3] DU M M, ZHANG D D, YAN C Z, et al. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos [J]. Aquatic Toxicology, 2012, 112/113: 1-10. doi: 10.1016/j.aquatox.2012.01.013 [4] HONG H Z, SHEN R, LIU W X, et al. Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma [J]. Marine Pollution Bulletin, 2015, 101(1): 110-118. doi: 10.1016/j.marpolbul.2015.11.009 [5] HUANG H L, WANG D, WAN W N, et al. Hexabromocyclododecanes in soils and plants from a plastic waste treatment area in North China: Occurrence, diastereomer- and enantiomer-specific profiles, and metabolization [J]. Environmental Science and Pollution Research, 2017, 24(27): 21625-21635. doi: 10.1007/s11356-017-9792-9 [6] HUANG H L, ZHANG S Z, LV J, et al. Experimental and theoretical evidence for diastereomer- and enantiomer-specific accumulation and biotransformation of HBCD in maize roots [J]. Environmental Science & Technology, 2016, 50(22): 12205-12213. [7] FROMME H, BECHER G, HILGER B, et al. Brominated flame retardants - Exposure and risk assessment for the general population [J]. International Journal of Hygiene and Environmental Health, 2016, 219(1): 1-23. doi: 10.1016/j.ijheh.2015.08.004 [8] KOCH C, SCHMIDT-KÖTTERS T, RUPP R, et al. Review of hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and -dynamics [J]. Environmental Pollution, 2015, 199: 26-34. doi: 10.1016/j.envpol.2015.01.011 [9] ZHAO J P, WANG P, WANG C, et al. Novel brominated flame retardants in West Antarctic atmosphere (2011-2018): Temporal trends, sources and chiral signature [J]. Science of the Total Environment, 2020, 720: 137557. doi: 10.1016/j.scitotenv.2020.137557 [10] MARTEINSON S C, BODNARYK A, FRY M, et al. A r0065view of 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane in the environment and assessment of its persistence, bioaccumulation and toxicity [J]. Environmental Research, 2021, 195: 110497. doi: 10.1016/j.envres.2020.110497 [11] ASNAKE S, PRADHAN A, BANJOP-KHARLYNGDOH J, et al. 1, 2-Dibromo-4-(1, 2 dibromoethyl) cyclohexane (TBECH)-mediated steroid hormone receptor activation and gene regulation in chicken LMH cells [J]. Environmental Toxicology and Chemistry, 2014, 33(4): 891-899. doi: 10.1002/etc.2509 [12] MANKIDY R, RANJAN B, HONARAMOOZ A, et al. Effects of novel brominated flame retardants on steroidogenesis in primary porcine testicular cells [J]. Toxicology Letters, 2014, 224(1): 141-146. doi: 10.1016/j.toxlet.2013.10.018 [13] MARTEINSON S C, LETCHER R J, GRAHAM L, et al. The flame retardant β-1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane: Fate, fertility, and reproductive success in American kestrels (Falco sparverius) [J]. Environmental Science & Technology, 2012, 46(15): 8440-8447. [14] PARK B J, PALACE V, WAUTIER K, et al. Thyroid axis disruption in juvenile brown trout (Salmo trutta) exposed to the flame retardant β-tetrabromoethylcyclohexane (β-TBECH) via the diet [J]. Environmental Science & Technology, 2011, 45(18): 7923-7927. [15] SAUNDERS D M V, PODAIMA M, WISEMAN S, et al. Effects of the brominated flame retardant TBCO on fecundity and profiles of transcripts of the HPGL-axis in Japanese medaka [J]. Aquatic Toxicology, 2015, 160: 180-187. doi: 10.1016/j.aquatox.2015.01.018 [16] SUN J X, TANG S, PENG H, et al. Combined transcriptomic and proteomic approach to identify toxicity pathways in early life stages of Japanese medaka (Oryzias latipes) exposed to 1, 2, 5, 6-tetrabromocyclooctane (TBCO) [J]. Environmental Science & Technology, 2016, 50(14): 7781-7790. [17] 时晓丽. 脂环族溴代阻燃剂对 SH-SY5Y 细胞的神经毒性研究 [D]. 北京: 中国科学院大学, 2019. SHI X L. In vitro study on the neurotoxicity of cycloaliphatic brominated flame retardants in SH-SY5Y cells[D]. Beijing: University of Chinese Academy of Sciences, 2019( in Chinese).
[18] FARMAHIN R, GANNON A M, GAGNÉ R, et al. Hepatic transcriptional dose-response analysis of male and female Fischer rats exposed to hexabromocyclododecane [J]. Food and Chemical Toxicology, 2019, 133: 110262. doi: 10.1016/j.fct.2018.12.032 [19] GENG J Y, HAN M, YANG X, et al. Different biotransformation of three hexabromocyclododecane diastereoisomers by Pseudomonas sp. under aerobic conditions [J]. Chemical Engineering Journal, 2019, 374: 870-879. doi: 10.1016/j.cej.2019.05.232 [20] HUANG H L, WANG D, WEN B, et al. Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies [J]. Science of the Total Environment, 2019, 656: 364-372. doi: 10.1016/j.scitotenv.2018.11.351 [21] NGUYEN K H, ABOU-ELWAFA ABDALLAH M, MOEHRING T, et al. Biotransformation of the flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane (TBECH) in vitro by human liver microsomes [J]. Environmental Science & Technology, 2017, 51(18): 10511-10518. [22] WANG X, WEI L, WANG Y, et al. Evaluation of development, locomotor behavior, oxidative stress, immune responses and apoptosis in developing zebrafish (Danio rerio) exposed to TBECH (tetrabromoethylcyclohexane) [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 217: 106-113. [23] HEEB N, SCHWEIZER W B, HAAG R, et al. Hexabromocyclododecanes: From Smart Molecules to Persistent Pollutants [J]. Chimia, 2008, 62(11): 936-936. doi: 10.2533/chimia.2008.936 [24] MARVIN C H, TOMY G T, ARMITAGE J M, et al. Hexabromocyclododecane: Current understanding of chemistry, environmental fate and toxicology and implications for global management [J]. Environmental Science & Technology, 2011, 45(20): 8613-8623. [25] SCHENKER U, MACLEOD M, SCHERINGER M, et al. Improving data quality for environmental fate models: A least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds [J]. Environmental Science & Technology, 2005, 39(21): 8434-8441. [26] HOWARD P H, MUIR D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce [J]. Environmental Science & Technology, 2010, 44(7): 2277-2285. [27] ARSENAULT G, LOUGH A, MARVIN C, et al. Structure characterization and thermal stabilities of the isomers of the brominated flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane [J]. Chemosphere, 2008, 72(8): 1163-1170. doi: 10.1016/j.chemosphere.2008.03.044 [28] RIDDELL N, ARSENAULT G, KLEIN J, et al. Structural characterization and thermal stabilities of the isomers of the brominated flame retardant 1, 2, 5, 6-tetrabromocyclooctane (TBCO) [J]. Chemosphere, 2009, 74(11): 1538-1543. doi: 10.1016/j.chemosphere.2008.11.026 [29] BERGMAN Å, HEINDEL J, JOBLING S, et al. State-of-the-science of endocrine disrupting chemicals, 2012 [J]. Toxicology Letters, 2012, 211: S3. [30] ZHU H K, ZHANG K, SUN H W, et al. Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China [J]. Environmental Pollution, 2017, 222: 338-347. doi: 10.1016/j.envpol.2016.12.029 [31] RUAN Y F, ZHANG K, LAM J C W, et al. Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong [J]. Journal of Hazardous Materials, 2019, 374: 211-218. doi: 10.1016/j.jhazmat.2019.04.041 [32] ZHANG Y Q, LU Y L, WANG P, et al. Transport of Hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China [J]. Science of the Total Environment, 2018, 610/611: 94-100. doi: 10.1016/j.scitotenv.2017.08.039 [33] OKONSKI K, MELYMUK L, KOHOUTEK J, et al. Hexabromocyclododecane: Concentrations and isomer profiles from sources to environmental sinks [J]. Environmental Science and Pollution Research, 2018, 25(36): 36624-36635. doi: 10.1007/s11356-018-3381-4 [34] DRAGE D S, NEWTON S, de WIT C A, et al. Concentrations of legacy and emerging flame retardants in air and soil on a transect in the UK West Midlands [J]. Chemosphere, 2016, 148: 195-203. doi: 10.1016/j.chemosphere.2016.01.034 [35] RAUERT C, SCHUSTER J K, ENG A, et al. Global atmospheric concentrations of brominated and chlorinated flame retardants and organophosphate esters [J]. Environmental Science & Technology, 2018, 52(5): 2777-2789. [36] NEWTON S, SELLSTRÖM U, de WIT C A. Emerging flame retardants, PBDEs, and HBCDDs in indoor and outdoor media in Stockholm, Sweden [J]. Environmental Science & Technology, 2015, 49(5): 2912-2920. [37] LI Y, ZHU X H, WANG L X, et al. Levels and gas-particle partitioning of hexabromocyclododecanes in the urban air of Dalian, China [J]. Environmental Science and Pollution Research, 2018, 25(27): 27514-27523. doi: 10.1007/s11356-018-2793-5 [38] ZHU Y S, YANG W D, LI X W, et al. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange [J]. Environmental Pollution, 2018, 233: 1104-1112. doi: 10.1016/j.envpol.2017.10.013 [39] LI H R, MO L G, YU Z Q, et al. Levels, isomer profiles and chiral signatures of particle-bound hexabromocyclododecanes in ambient air around Shanghai, China [J]. Environmental Pollution, 2012, 165: 140-146. doi: 10.1016/j.envpol.2012.02.015 [40] LEE S, MOON H B. Multi-matrix distribution and contamination profiles of HBCDD isomers in a man-made saltwater lake near industrial complexes with high flame retardant consumption in Korea [J]. Marine Pollution Bulletin, 2021, 172: 112812. doi: 10.1016/j.marpolbul.2021.112812 [41] ZHANG Y W, RUAN Y F, SUN H W, et al. Hexabromocyclododecanes in surface sediments and a sediment core from Rivers and Harbor in the northern Chinese city of Tianjin [J]. Chemosphere, 2013, 90(5): 1610-1616. doi: 10.1016/j.chemosphere.2012.08.037 [42] LI H R, la GUARDIA M J, LIU H H, et al. Brominated and organophosphate flame retardants along a sediment transect encompassing the Guiyu, China e-waste recycling zone [J]. Science of the Total Environment, 2019, 646: 58-67. doi: 10.1016/j.scitotenv.2018.07.276 [43] OH J K, KOTANI K, MANAGAKI S, et al. Levels and distribution of hexabromocyclododecane and its lower brominated derivative in Japanese riverine environment [J]. Chemosphere, 2014, 109: 157-163. doi: 10.1016/j.chemosphere.2014.01.074 [44] LI H H, SHANG H T, WANG P, et al. Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China [J]. Journal of Environmental Sciences, 2013, 25(1): 69-76. doi: 10.1016/S1001-0742(12)60010-2 [45] FENG A H, CHEN S J, CHEN M Y, et al. Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in Southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD [J]. Marine Pollution Bulletin, 2012, 64(5): 919-925. doi: 10.1016/j.marpolbul.2012.03.008 [46] HARRAD S, ABDALLAH M A E, COVACI A. Causes of variability in concentrations and diastereomer patterns of hexabromocyclododecanes in indoor dust [J]. Environment International, 2009, 35(3): 573-579. doi: 10.1016/j.envint.2008.10.005 [47] JO H, SON M H, SEO S H, et al. Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment: Air, soil, sludge, sediment, and fish [J]. Environmental Pollution, 2017, 226: 515-522. doi: 10.1016/j.envpol.2017.04.093 [48] TANG J F, FENG J Y, LI X H, et al. Levels of flame retardants HBCD, TBBPA and TBC in surface soils from an industrialized region of East China [J]. Environmental Science:Processes & Impacts, 2014, 16(5): 1015-1021. [49] GAO S T, WANG J Z, YU Z Q, et al. Hexabromocyclododecanes in surface soils from E-waste recycling areas and industrial areas in South China: Concentrations, diastereoisomer- and enantiomer-specific profiles, and inventory [J]. Environmental Science & Technology, 2011, 45(6): 2093-2099. [50] CAO X H, LU Y L, ZHANG Y Q, et al. An overview of hexabromocyclododecane (HBCDs) in environmental media with focus on their potential risk and management in China [J]. Environmental Pollution, 2018, 236: 283-295. doi: 10.1016/j.envpol.2018.01.040 [51] LI H H, ZHANG Q H, WANG P, et al. Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay area, East China [J]. Journal of Environmental Monitoring, 2012, 14(10): 2591-2597. doi: 10.1039/c2em30231d [52] YI S, LIU J G, JIN J, et al. Assessment of the occupational and environmental risks of hexabromocyclododecane (HBCD) in China [J]. Chemosphere, 2016, 150: 431-437. doi: 10.1016/j.chemosphere.2016.01.047 [53] GAUTHIER L T, POTTER D, HEBERT C E, et al. Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of great lakes herring gulls [J]. Environmental Science & Technology, 2009, 43(2): 312-317. [54] SHOEIB M, AHRENS L, JANTUNEN L, et al. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada [J]. Atmospheric Environment, 2014, 99: 140-147. [55] RIDDELL N, ARSENAULT G, LOUGH A, et al. The three-dimensional structural characterization of hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) [J]. Chemosphere, 2008, 73(4): 479-483. doi: 10.1016/j.chemosphere.2008.06.047 [56] TAO F, ABDALLAH M A E, HARRAD S. Emerging and legacy flame retardants in UK indoor air and dust: Evidence for replacement of PBDEs by emerging flame retardants? [J]. Environmental Science & Technology, 2016, 50(23): 13052-13061. [57] SIMONETTI G, di FILIPPO P, RICCARDI C, et al. Occurrence of halogenated pollutants in domestic and occupational indoor dust [J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 3813. doi: 10.3390/ijerph17113813 [58] BROWN F R, WHITEHEAD T P, PARK J S, et al. Levels of non-polybrominated diphenyl ether brominated flame retardants in residential house dust samples and fire station dust samples in California [J]. Environmental Research, 2014, 135: 9-14. doi: 10.1016/j.envres.2014.08.022 [59] MELYMUK L, BOHLIN-NIZZETTO P, KUKUČKA P, et al. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air [J]. Environmental Pollution, 2016, 218: 392-401. doi: 10.1016/j.envpol.2016.07.018 [60] PERSSON J, WANG T, HAGBERG J. Temporal trends of decabromodiphenyl ether and emerging brominated flame retardants in dust, air and window surfaces of newly built low-energy preschools [J]. Indoor Air, 2019, 29(2): 263-275. doi: 10.1111/ina.12528 [61] HONG W J, JIA H L, DING Y S, et al. Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in multi-matrices from an electronic waste (e-waste) recycling site in Northern China [J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 80-90. doi: 10.1007/s10163-016-0550-8 [62] MUIR D, HOWARD P H, MEYLAN W. Screening chemicals in commerce to identify possible persistent and bioaccumulative organohalogen chemicals: new results [J]. Organohalogen Compounds, 2007, 69: 1053-1056. [63] TOMY G T, PLESKACH K, ARSENAULT G, et al. Identification of the novel cycloaliphatic brominated flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane in Canadian arctic beluga (Delphinapterus leucas) [J]. Environmental Science & Technology, 2008, 42(2): 543-549. [64] NEWTON S, BIDLEMAN T, BERGKNUT M, et al. Atmospheric deposition of persistent organic pollutants and chemicals of emerging concern at two sites in northern Sweden [J]. Environmental Science. Processes & Impacts, 2014, 16(2): 298-305. [65] CARLSSON P, VRANA B, SOBOTKA J, et al. New brominated flame retardants and dechlorane plus in the Arctic: Local sources and bioaccumulation potential in marine benthos [J]. Chemosphere, 2018, 211: 1193-1202. doi: 10.1016/j.chemosphere.2018.07.158 [66] FERNIE K J, CHABOT D, CHAMPOUX L, et al. Spatiotemporal patterns and relationships among the diet, biochemistry, and exposure to flame retardants in an apex avian predator, the peregrine falcon [J]. Environmental Research, 2017, 158: 43-53. doi: 10.1016/j.envres.2017.05.035 [67] RUAN Y F, ZHANG X H, QIU J W, et al. Stereoisomer-specific trophodynamics of the chiral brominated flame retardants HBCD and TBECH in a marine food web, with implications for human exposure [J]. Environmental Science & Technology, 2018, 52(15): 8183-8193. [68] WANG Q, KELLY B C. Occurrence and distribution of halogenated flame retardants in an urban watershed: Comparison to polychlorinated biphenyls and organochlorine pesticides [J]. Environmental Pollution, 2017, 231: 252-261. doi: 10.1016/j.envpol.2017.07.092 [69] SÜHRING R, BUSCH F, FRICKE N, et al. Distribution of brominated flame retardants and dechloranes between sediments and benthic fish—A comparison of a freshwater and marine habitat [J]. Science of the Total Environment, 2016, 542: 578-585. doi: 10.1016/j.scitotenv.2015.10.085 [70] RUAN Y F, LAM J C W, ZHANG X H, et al. Temporal changes and stereoisomeric compositions of 1, 2, 5, 6, 9, 10-hexabromocyclododecane and 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane in marine mammals from the South China sea [J]. Environmental Science & Technology, 2018, 52(5): 2517-2526. [71] ZHANG Y Q, LU Y L, WANG P, et al. Biomagnification of Hexabromocyclododecane (HBCD) in a coastal ecosystem near a large producer in China: Human exposure implication through food web transfer [J]. Science of the Total Environment, 2018, 624: 1213-1220. doi: 10.1016/j.scitotenv.2017.12.153 [72] KIM J T, CHOI Y J, BARGHI M, et al. Occurrence, distribution, and bioaccumulation of new and legacy persistent organic pollutants in an ecosystem on King George Island, maritime Antarctica [J]. Journal of Hazardous Materials, 2021, 405: 124141. doi: 10.1016/j.jhazmat.2020.124141 [73] WANG W T, CHOO G, CHO H S, et al. The occurrence and distribution of hexabromocyclododecanes in freshwater systems, focusing on tissue-specific bioaccumulation in crucian carp [J]. Science of the Total Environment, 2018, 635: 470-478. doi: 10.1016/j.scitotenv.2018.03.262 [74] TANG B, ZENG Y H, LUO X J, et al. Bioaccumulative characteristics of tetrabromobisphenol A and hexabromocyclododecanes in multi-tissues of prey and predator fish from an e-waste site, South China [J]. Environmental Science and Pollution Research, 2015, 22(16): 12011-12017. doi: 10.1007/s11356-015-4463-1 [75] ZHU C F, WANG P, LI Y M, et al. Trophic transfer of hexabromocyclododecane in the terrestrial and aquatic food webs from an e-waste dismantling region in East China [J]. Environmental Science. Processes & Impacts, 2017, 19(2): 154-160. [76] ZHANG Y W, SUN H W, RUAN Y F. Enantiomer-specific accumulation, depuration, metabolization and isomerization of hexabromocyclododecane (HBCD) diastereomers in mirror carp from water [J]. Journal of Hazardous Materials, 2014, 264: 8-15. doi: 10.1016/j.jhazmat.2013.10.062 [77] ZHANG Y W, SUN H W, LIU F, et al. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure [J]. Chemosphere, 2013, 93(8): 1561-1568. doi: 10.1016/j.chemosphere.2013.08.004 [78] LI H W, HU Y X, SUN Y X, et al. Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City, South China [J]. Environment International, 2019, 129: 239-246. doi: 10.1016/j.envint.2019.05.034 [79] ZHU H K, SUN H W, YAO Y M, et al. Legacy and alternative brominated flame retardants in outdoor dust and pine needles in mainland China: Spatial trends, dust-plant partitioning and human exposure [J]. Environmental Pollution, 2018, 243: 758-765. doi: 10.1016/j.envpol.2018.08.097 [80] KIM J T, CHOI Y J, BARGHI M, et al. Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica [J]. Environmental Pollution, 2018, 235: 302-311. doi: 10.1016/j.envpol.2017.12.080 [81] ZHU H K, SUN H W, ZHANG Y W, et al. Uptake pathway, translocation, and isomerization of hexabromocyclododecane diastereoisomers by wheat in closed Chambers [J]. Environmental Science & Technology, 2016, 50(5): 2652-2659. [82] ZHU H K, SUN H W, YAO Y M, et al. Fate and adverse effects of hexabromocyclododecane diastereoisomers (HBCDDs) in a soil-ryegrass pot system [J]. Chemosphere, 2017, 184: 452-459. doi: 10.1016/j.chemosphere.2017.05.166 [83] LÜ H, MA X J, HUANG X J, et al. Distribution, diastereomer-specific accumulation and associated health risks of hexabromocyclododecanes (HBCDs) in soil-vegetable system of the Pearl River Delta region, South China [J]. Journal of Environmental Management, 2019, 248: 109321. doi: 10.1016/j.jenvman.2019.109321 [84] LI B, YAO T Q, SUN H W, et al. Diastereomer- and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms [J]. Science of the Total Environment, 2016, 542: 427-434. doi: 10.1016/j.scitotenv.2015.10.100 [85] GUO Z, ZHANG L J, LIU X Y, et al. The enrichment and purification of hexabromocyclododecanes and its effects on thyroid in zebrafish [J]. Ecotoxicology and Environmental Safety, 2019, 185: 109690. doi: 10.1016/j.ecoenv.2019.109690 [86] XIA W, WANG J M, YANG H, et al. Bioaccumulation and distribution of hexabromocyclododecane isomers in duck tissues [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(6): 754-759. doi: 10.1007/s00128-018-2342-4 [87] DU M M, LIN L F, YAN C Z, et al. Diastereoisomer- and enantiomer-specific accumulation, depuration, and bioisomerization of hexabromocyclododecanes in zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2012, 46(20): 11040-11046. [88] HAKK H. Comparative metabolism studies of hexabromocyclododecane (HBCD) diastereomers in male rats following a single oral dose [J]. Environmental Science & Technology, 2016, 50(1): 89-96. [89] LAW K, PALACE V P, HALLDORSON T, et al. Dietary accumulation of hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss) Ⅰ: Bioaccumulation parameters and evidence of bioisomerization [J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1757-1761. doi: 10.1897/05-445R.1 [90] LI B, CHEN H, SUN H W, et al. Distribution, isomerization and enantiomer selectivity of hexabromocyclododecane (HBCD) diastereoisomers in different tissue and subcellular fractions of earthworms [J]. Ecotoxicology and Environmental Safety, 2017, 139: 326-334. doi: 10.1016/j.ecoenv.2017.01.004 [91] SHIN E S, JEONG Y, BARGHI M, et al. Internal distribution and fate of persistent organic contaminants (PCDD/Fs, DL-PCBs, HBCDs, TBBPA, and PFASs) in a Bos Taurus [J]. Environmental Pollution, 2020, 267: 115306. doi: 10.1016/j.envpol.2020.115306 [92] SU G Y, MCGOLDRICK D J, CLARK M G, et al. Isomer-specific hexabromocyclododecane (HBCDD) levels in top predator fish from across Canada and 36-year temporal trends in lake Ontario [J]. Environmental Science & Technology, 2018, 52(11): 6197-6207. [93] HONG H Z, LV D, LIU W X, et al. Toxicity and bioaccumulation of three hexabromocyclododecane diastereoisomers in the marine copepod Tigriopus japonicas [J]. Aquatic Toxicology, 2017, 188: 1-9. doi: 10.1016/j.aquatox.2017.04.010 [94] ZHENG G M, WAN Y, SHI S N, et al. Trophodynamics of emerging brominated flame retardants in the aquatic food web of lake Taihu: Relationship with organism metabolism across trophic levels [J]. Environmental Science & Technology, 2018, 52(8): 4632-4640. [95] CHEN D, LETCHER R J, BURGESS N M, et al. Flame retardants in eggs of four gull species (Laridae) from breeding sites spanning Atlantic to Pacific Canada [J]. Environmental Pollution, 2012, 168: 1-9. doi: 10.1016/j.envpol.2012.03.040 [96] SU G Y, LETCHER R J, MOORE J N, et al. Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States [J]. Environmental Research, 2015, 142: 720-730. doi: 10.1016/j.envres.2015.08.018 [97] TAO F, ABOU-ELWAFA ABDALLAH M, ASHWORTH D C, et al. Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD [J]. Environment International, 2017, 105: 95-104. doi: 10.1016/j.envint.2017.05.010 [98] KURT-KARAKUS P B, MUIR D C G, de JOURDAN B, et al. Bioaccumulation of selected halogenated organic flame retardants in lake Ontario [J]. Environmental Toxicology and Chemistry, 2019, 38(6): 1198-1210. doi: 10.1002/etc.4413 [99] FISK P R, GIRLING A E, WILDEY R J. Prioritisation of flame retardants for environmental risk assessment [R]. Environment Agency, United Kingdom, 2003. [100] ESSLINGER S, BECKER R, MÜLLER-BELECKE A, et al. HBCD stereoisomer pattern in mirror carps following dietary exposure to pure γ-HBCD enantiomers [J]. Journal of Agricultural and Food Chemistry, 2010, 58(17): 9705-9710. doi: 10.1021/jf101469q [101] GANNON A M, NUNNIKHOVEN A, LISTON V, et al. Rat strain response differences upon exposure to technical or alpha hexabromocyclododecane [J]. Food and Chemical Toxicology, 2019, 130: 284-307. doi: 10.1016/j.fct.2019.05.003 [102] SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane gamma: Effect of dose, timing, route, repeated exposure, and metabolism [J]. Toxicological Sciences, 2010, 117(2): 282-293. doi: 10.1093/toxsci/kfq183 [103] RATEL J, PLANCHE C, MERCIER F, et al. Liver volatolomics to reveal poultry exposure to γ-hexabromocyclododecane (HBCD) [J]. Chemosphere, 2017, 189: 634-642. doi: 10.1016/j.chemosphere.2017.09.074 [104] SANDERS J M, KNUDSEN G A, BIRNBAUM L S. The fate of β-hexabromocyclododecane in female C57BL/6 mice [J]. Toxicological Sciences, 2013, 134(2): 251-257. doi: 10.1093/toxsci/kft121 [105] ABDALLAH M A E, UCHEA C, CHIPMAN J K, et al. Enantioselective biotransformation of hexabromocyclododecane by in vitro rat and trout hepatic sub-cellular fractions [J]. Environmental Science & Technology, 2014, 48(5): 2732-2740. [106] ZHENG X B, ERRATICO C, ABDALLAH M A E, et al. In vitro metabolism of BDE-47, BDE-99, and α-, β-, γ-HBCD isomers by chicken liver microsomes [J]. Environmental Research, 2015, 143: 221-228. doi: 10.1016/j.envres.2015.10.023 [107] ZHENG X B, ERRATICO C, LUO X J, et al. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants [J]. Chemosphere, 2016, 151: 30-36. doi: 10.1016/j.chemosphere.2016.02.054 [108] ESSLINGER S, BECKER R, MAUL R, et al. Hexabromocyclododecane enantiomers: Microsomal degradation and patterns of hydroxylated metabolites [J]. Environmental Science & Technology, 2011, 45(9): 3938-3944. [109] BRANDSMA S H, van der VEN L T M, de BOER J, et al. Identification of hydroxylated metabolites of hexabromocyclododecane in wildlife and 28-days exposed Wistar rats [J]. Environmental Science & Technology, 2009, 43(15): 6058-6063. [110] HAKK H, SZABO D T, HUWE J, et al. Novel and distinct metabolites identified following a single oral dose of α- or γ-hexabromocyclododecane in mice [J]. Environmental Science & Technology, 2012, 46(24): 13494-13503. [111] SZABO D T, PATHMASIRI W, SUMNER S, et al. Serum metabolomic profiles in neonatal mice following oral brominated flame retardant exposures to hexabromocyclododecane (HBCD) alpha, gamma, and commercial mixture [J]. Environmental Health Perspectives, 2017, 125(4): 651-659. doi: 10.1289/EHP242 [112] CHANG T H, WANG R, PENG Y H, et al. Biodegradation of hexabromocyclododecane by Rhodopseudomonas palustris YSC3 strain: A free-living nitrogen-fixing bacterium isolated in Taiwan [J]. Chemosphere, 2020, 246: 125621. doi: 10.1016/j.chemosphere.2019.125621 [113] HEEB N V, GRUBELNIK A, GEUEKE B, et al. Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming Sphingobium chinhatense strain IP26 [J]. Chemosphere, 2017, 182: 491-500. doi: 10.1016/j.chemosphere.2017.05.047 [114] HUANG L, WANG W W, SHAH S B, et al. The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation [J]. Journal of Hazardous Materials, 2019, 380: 120833. doi: 10.1016/j.jhazmat.2019.120833 [115] SHAH S B, HUANG L, HU H Y, et al. Characterization of environmentally friendly degradation of hexabromocyclododecane by a Bacillus strain HBCD-sjtu [J]. International Biodeterioration & Biodegradation, 2019, 145: 104794. [116] WANG R, LIN C Y, CHEN S H, et al. Using high-throughput transcriptome sequencing to investigate the biotransformation mechanism of hexabromocyclododecane with Rhodopseudomonas palustris in water [J]. Science of the Total Environment, 2019, 692: 249-258. doi: 10.1016/j.scitotenv.2019.07.140 [117] YANG K L, ZHONG Q, QIN H M, et al. Molecular response mechanism in Escherichia coli under hexabromocyclododecane stress [J]. Science of the Total Environment, 2020, 708: 135199. doi: 10.1016/j.scitotenv.2019.135199 [118] ZHONG Y, WANG H L, YU Z Q, et al. Diastereoisomer-specific biotransformation of hexabromocyclododecanes by a mixed culture containing Dehalococcoides mccartyi strain 195 [J]. Frontiers in Microbiology, 2018, 9: 1713. doi: 10.3389/fmicb.2018.01713 [119] ZHANG Q, YAO Y M, WANG Y, et al. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review [J]. Environmental Pollution, 2021, 288: 117742. doi: 10.1016/j.envpol.2021.117742 [120] HEEB N V, MAZENAUER M, WYSS S, et al. Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of in vitro and in silico results [J]. Chemosphere, 2018, 207: 118-129. doi: 10.1016/j.chemosphere.2018.05.057 [121] NYHOLM J R, NORMAN A, NORRGREN L, et al. Uptake and biotransformation of structurally diverse brominated flame retardants in zebrafish (Danio rerio) after dietary exposure [J]. Environmental Toxicology and Chemistry, 2009, 28(5): 1035-1042. doi: 10.1897/08-302.1 [122] GEMMILL B, PLESKACH K, PETERS L, et al. Toxicokinetics of tetrabromoethylcyclohexane (TBECH) in juvenile brown trout (Salmo trutta) and effects on plasma sex hormones [J]. Aquatic Toxicology, 2011, 101(2): 309-317. doi: 10.1016/j.aquatox.2010.11.003 [123] CHU S G, GAUTHIER L T, LETCHER R J. Alpha and beta isomers of tetrabromoethylcyclohexane (TBECH) flame retardant: Depletion and metabolite formation in vitro using a model rat microsomal assay [J]. Environmental Science & Technology, 2012, 46(18): 10263-10270. [124] WONG F, KURT-KARAKUS P, BIDLEMAN T F. Fate of brominated flame retardants and organochlorine pesticides in urban soil: Volatility and degradation [J]. Environmental Science & Technology, 2012, 46(5): 2668-2674. [125] DARNERUD P O. Toxic effects of brominated flame retardants in man and in wildlife [J]. Environment International, 2003, 29(6): 841-853. doi: 10.1016/S0160-4120(03)00107-7 [126] LILIENTHAL H, van der VEN L T M, PIERSMA A H, et al. Effects of the brominated flame retardant hexabromocyclododecane (HBCD) on dopamine-dependent behavior and brainstem auditory evoked potentials in a one-generation reproduction study in Wistar rats [J]. Toxicology Letters, 2009, 185(1): 63-72. doi: 10.1016/j.toxlet.2008.12.002 [127] van der VEN L T M, VERHOEF A, van de KUIL T, et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in wistar rats [J]. Toxicological Sciences, 2006, 94(2): 281-292. doi: 10.1093/toxsci/kfl113 [128] FERY Y, MUELLER S O, SCHRENK D. Development of stably transfected human and rat hepatoma cell lines for the species-specific assessment of xenobiotic response enhancer module (XREM)-dependent induction of drug metabolism [J]. Toxicology, 2010, 277(1/2/3): 11-19. [129] MARIUSSEN E, de FONNUM F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles [J]. Neurochemistry International, 2003, 43(4/5): 533-542. [130] SAEGUSA Y, FUJIMOTO H, WOO G H, et al. Transient aberration of neuronal development in the hippocampal dentate gyrus after developmental exposure to brominated flame retardants in rats [J]. Archives of Toxicology, 2012, 86(9): 1431-1442. doi: 10.1007/s00204-012-0824-4 [131] REFFATTO V, RASINGER J D, CARROLL T S, et al. Parallel in vivo and in vitro transcriptomics analysis reveals calcium and zinc signalling in the brain as sensitive targets of HBCD neurotoxicity [J]. Archives of Toxicology, 2018, 92(3): 1189-1203. doi: 10.1007/s00204-017-2119-2 [132] IBHAZEHIEBO K, IWASAKI T, SHIMOKAWA N, et al. 1, 2, 5, 6, 9, 10-αHexabromocyclododecane (HBCD) impairs thyroid hormone-induced dendrite arborization of Purkinje cells and suppresses thyroid hormone receptor-mediated transcription [J]. The Cerebellum, 2011, 10(1): 22-31. doi: 10.1007/s12311-010-0218-1 [133] AL-MOUSA F, MICHELANGELI F. Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells [J]. PLoS One, 2012, 7(4): e33059. doi: 10.1371/journal.pone.0033059 [134] AL-MOUSA F, MICHELANGELI F. The sarcoplasmic-endoplasmic Reticulum Ca2+-ATPase (SERCA) is the likely molecular target for the acute toxicity of the brominated flame retardant hexabromocyclododecane (HBCD) [J]. Chemico-Biological Interactions, 2014, 207: 1-6. doi: 10.1016/j.cbi.2013.10.021 [135] JOHNSON P I, STAPLETON H M, MUKHERJEE B, et al. Associations between brominated flame retardants in house dust and hormone levels in men [J]. Science of the Total Environment, 2013, 445/446: 177-184. doi: 10.1016/j.scitotenv.2012.12.017 [136] DOROSH A, DĚD L, ELZEINOVÁ F, et al. Assessing oestrogenic effects of brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on MCF-7 cells [J]. Folia Biologica, 2011, 57(1): 35-39. [137] HAMERS T, KAMSTRA J H, SONNEVELD E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants [J]. Toxicological Sciences, 2006, 92(1): 157-173. doi: 10.1093/toxsci/kfj187 [138] FERNIE K J, MARTEINSON S C, BIRD D M, et al. Reproductive changes in American kestrels (Falco sparverius) in relation to exposure to technical hexabromocyclododecane flame retardant [J]. Environmental Toxicology and Chemistry, 2011, 30(11): 2570-2575. doi: 10.1002/etc.652 [139] MARTEINSON S C, KIMMINS S, LETCHER R J, et al. Diet exposure to technical hexabromocyclododecane (HBCD) affects testes and circulating testosterone and thyroxine levels in American kestrels (Falco sparverius) [J]. Environmental Research, 2011, 111(8): 1116-1123. doi: 10.1016/j.envres.2011.08.006 [140] XIE X N, YU C X, REN Q D, et al. Exposure to HBCD promotes adipogenesis both in vitro and in vivo by interfering with Wnt6 expression [J]. Science of the Total Environment, 2020, 705: 135917. doi: 10.1016/j.scitotenv.2019.135917 [141] 王玲, 郑明刚, 仝艳丽, 等. 六溴环十二烷(hexabromocyclododecane, HBCD)暴露对生长阶段文昌鱼的毒性及其几种重要酶活性的影响 [J]. 环境科学学报, 2011, 31(5): 1086-1091. WANG L, ZHENG M G, TONG Y L, et al. Effect of immune-related enzymes in amphioxus exposed to waterborne hexabromocyclododecane(HBCD) [J]. Acta Scientiae Circumstantiae, 2011, 31(5): 1086-1091(in Chinese).
[142] YANAGISAWA R, KOIKE E, WIN-SHWE T T, et al. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet [J]. Environmental Health Perspectives, 2014, 122(3): 277-283. doi: 10.1289/ehp.1307421 [143] SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane alpha: Effect of dose, timing, route, repeated exposure, and metabolism [J]. Toxicological Sciences, 2011, 121(2): 234-244. doi: 10.1093/toxsci/kfr059 [144] DONG H K, LU G H, YAN Z H, et al. Responses of antioxidant and biotransformation enzymes in Carassius carassius exposed to hexabromocyclododecane [J]. Environmental Toxicology and Pharmacology, 2018, 62: 46-53. doi: 10.1016/j.etap.2018.06.009 [145] SHI Y J, XU X B, CHEN J, et al. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane [J]. Environmental Pollution, 2018, 232: 245-251. doi: 10.1016/j.envpol.2017.09.039 [146] JIN Y Y, SHANG Y, ZHANG D P, et al. Hexabromocyclododecanes promoted autophagy through the PI3K/Akt/mTOR pathway in L02 cells [J]. Journal of Environmental Management, 2019, 244: 77-82. [147] 陈海波, 李辉, 刘勇弟. 六溴环十二烷急性暴露对秀丽隐杆线虫的毒性效应 [J]. 华东理工大学学报(自然科学版), 2019, 45(1): 87-94. CHEN H B, LI H, LIU Y D. Toxicological effects of hexabromocyclododecane (HBCD) by acute exposure on nematode Caenorhabditis elegans [J]. Journal of East China University of Science and Technology, 2019, 45(1): 87-94(in Chinese).
[148] WANG X L, YANG J, LI H, et al. Chronic toxicity of hexabromocyclododecane(HBCD) induced by oxidative stress and cell apoptosis on nematode Caenorhabditis elegans [J]. Chemosphere, 2018, 208: 31-39. doi: 10.1016/j.chemosphere.2018.05.147 [149] PALACE V P, PLESKACH K, HALLDORSON T, et al. Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers [J]. Environmental Science & Technology, 2008, 42(6): 1967-1972. [150] MARTEINSON S C, EULAERS I, JASPERS V L B, et al. Transfer of hexabromocyclododecane flame retardant isomers from captive American kestrel eggs to feathers and their association with thyroid hormones and growth [J]. Environmental Pollution, 2017, 220: 441-451. doi: 10.1016/j.envpol.2016.09.086 [151] HUANG X M, CHEN C, SHANG Y, et al. In vitro study on the biotransformation and cytotoxicity of three hexabromocyclododecane diastereoisomers in liver cells [J]. Chemosphere, 2016, 161: 251-258. doi: 10.1016/j.chemosphere.2016.07.001 [152] SHI X L, ZHA J M, WEN B, et al. Diastereoisomer-specific neurotoxicity of hexabromocyclododecane in human SH-SY5Y neuroblastoma cells [J]. Science of the Total Environment, 2019, 686: 893-902. doi: 10.1016/j.scitotenv.2019.06.008 [153] CURRAN I H A, LISTON V, NUNNIKHOVEN A, et al. Toxicologic effects of 28-day dietary exposure to the flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)-cyclohexane (TBECH) in F344 rats [J]. Toxicology, 2017, 377: 1-13. doi: 10.1016/j.tox.2016.12.001 [154] LIU P Y, MENG T, LI Y Y, et al. Tetrabromoethylcyclohexane affects gonadal differentiation and development in the frog Pelophylax nigromaculatus [J]. Aquatic Toxicology, 2017, 192: 40-47. doi: 10.1016/j.aquatox.2017.09.009 [155] PRADHAN A, KHARLYNGDOH J B, ASNAKE S, et al. The brominated flame retardant TBECH activates the zebrafish (Danio rerio) androgen receptor, alters gene transcription and causes developmental disturbances [J]. Aquatic Toxicology, 2013, 142/143: 63-72. doi: 10.1016/j.aquatox.2013.07.018 [156] LARSSON A, ERIKSSON L A, ANDERSSON P L, et al. Identification of the brominated flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane as an androgen agonist [J]. Journal of Medicinal Chemistry, 2006, 49(25): 7366-7372. doi: 10.1021/jm060713d [157] NYHOLM J R, NORMAN A, NORRGREN L, et al. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio) [J]. Chemosphere, 2008, 73(2): 203-208. doi: 10.1016/j.chemosphere.2008.04.033 [158] WANG X, WEI L, ZHU J B, et al. Tetrabromoethylcyclohexane (TBECH) exhibits immunotoxicity in murine macrophages [J]. Environmental Toxicology, 2020, 35(2): 159-166. doi: 10.1002/tox.22852 [159] STOJAK B L, van GINKEL R A, IVANCO T L, et al. Acute β-tetrabromoethylcyclohexane (β-TBECH) treatment inhibits the electrical activity of rat Purkinje neurons [J]. Chemosphere, 2019, 231: 301-307. doi: 10.1016/j.chemosphere.2019.05.102 [160] PORTER E, CRUMP D, EGLOFF C, et al. Use of an avian hepatocyte assay and the avian Toxchip Polymerse chain reaction array for testing prioritization of 16 organic flame retardants [J]. Environmental Toxicology and Chemistry, 2014, 33(3): 573-582. doi: 10.1002/etc.2469 [161] KHALAF H, LARSSON A, BERG H, et al. Diastereomers of the brominated flame retardant 1, 2-dibromo-4-(1, 2 dibromoethyl)cyclohexane induce androgen receptor activation in the HepG2 hepatocellular carcinoma cell line and the LNCaP prostate cancer cell line [J]. Environmental Health Perspectives, 2009, 117(12): 1853-1859. doi: 10.1289/ehp.0901065 [162] MARTEINSON S C, FERNIE K J. Is the current-use flame retardant, DBE-DBCH, a potential obesogen?Effects on body mass, fat content and associated behaviors in American kestrels [J]. Ecotoxicology and Environmental Safety, 2019, 169: 770-777. doi: 10.1016/j.ecoenv.2018.11.104 [163] HUANG H L, LV L, WANG D, et al. Biochemical and molecular responses of maize (Zea mays L. ) to 1, 2-dibromo-4-(1, 2 dibromoethyl) cyclohexane (TBECH) diastereomers: Oxidative stress, DNA damage, antioxidant enzyme gene expression and diversity of root exudates [J]. Science of the Total Environment, 2021, 753: 141872. doi: 10.1016/j.scitotenv.2020.141872 [164] SAUNDERS D M V, HIGLEY E B, HECKER M, et al. In vitro endocrine disruption and TCDD-like effects of three novel brominated flame retardants: TBPH, TBB, & TBCO [J]. Toxicology Letters, 2013, 223(2): 252-259. doi: 10.1016/j.toxlet.2013.09.009 [165] van ESSEN D, DEVOY C, MILLER J, et al. Effects of the brominated flame retardant, TBCO, on development of zebrafish (Danio rerio) embryos [J]. Chemosphere, 2021, 266: 129195. doi: 10.1016/j.chemosphere.2020.129195