-
多氯二苯并对二噁英和二苯并呋喃(polychlorinated dibenzo-p-dioxins and dibenzofurans,PCDD/Fs),也称为二噁英,是持久性有机污染物,已被定性为内分泌干扰物(endocrine-disrupting chemicals,EDCs)。研究发现,EDCs暴露会干扰类固醇激素的生物合成、转运和代谢[1]。二噁英是燃烧过程的副产物[2],在1962—1971年越南战争期间,美军在越南南部喷洒了大量含有二噁英的除草剂,虽然战争已经过去了40多年,但是喷洒区域环境和人体(母乳和血液)中的二噁英含量仍然显著高于非喷洒地区[3-7],特别是在战争期间用于储存除草剂的美国前空军基地周围,被称为二噁英暴露“热点地区”[8]。二噁英暴露可引起皮肤病、肝损伤和不良生殖影响、癌症和神经发育障碍[9-11]。最近的研究结果表明,二噁英暴露会导致成年男性性激素随着年龄的增长而增高,从而导致其罹患前列腺癌症的风险升高[12]。
由于二噁英的亲脂性,使得其能够通过食物摄入在人体脂质中广泛分布和积累,二噁英不仅在人体组织和血浆中积累,而且还可以通过脐带和母乳从母体转移到胎儿[13-15]。流行病学研究表明,围产期暴露于双酚A、二噁英和多氯联苯(polychlorinated biphenyls,PCBs)可能会改变婴幼儿正常的性类固醇激素含量,影响其生殖能力[16-20]。
我们在前期的研究中发现,二噁英暴露地区初产妇母乳中二噁英含量比非暴露区域高约4倍,围产期二噁英暴露导致1岁儿童类固醇激素脱氢表雄酮(dehydroepiandrosterone,DHEA)水平升高[21]。但没有队列研究阐明围产期二噁英暴露对这些儿童类固醇激素的长期影响。本研究通过队列研究揭示围产期二噁英暴露对儿童类固醇激素的长期影响。
二噁英暴露对儿童早期类固醇激素的影响
Effects of dioxin exposure on steroid hormones in early childhood
-
摘要: 为了阐明在儿童重要发育阶段二噁英对其内分泌的干扰。本研究于2010年和2011年,招募二噁英暴露地区37对母婴和非暴露地区44对母婴,运用气相色谱-质谱法测定母乳中二噁英含量,运用液相色谱-串联质谱法测定儿童唾液类固醇激素含量。结果显示,暴露地区母乳中二噁英含量(Mean=11.0 pg·lipid−1)明显高于非暴露地区(Mean=3.4 pg·lipid−1)。暴露地区男童1岁时唾液中脱氢表雄酮(DHEA)含量与二噁英同系物中2,3,7,8-TeCDD(β=0.4235;P=0.0395)、 1,2,3,7,8-PeCDD(β=0.4742;P=0.0190)、1,2,3,4,7,8- HxCDD(β=0.4949;P=0.0140)和1,2,3,6,7,8-HxCDD(β=0.4745;P=0.0327)以及TEQ PCDD(β=0.6566;P=0.0005)和TEQ PCDD/DF(β=0.6137;P=0.0014)呈正相关(P<0.05),5岁时与二噁英同系物1,2,3,7,8-PeCDD(β=−0.5925;P=0.0057)、1,2,3,6,7,8- HxCDD(β=−0.6350;P=0.0026)和1,2,3,7,8,9-HxCDD(β=−0.5623;P=0.0108)呈负相关(P<0.05),而女童1岁时与二噁英呈负相关(P<0.05),但5岁时无相关性(P>0.05)。综上所述,围产期二噁英暴露对儿童早期DHEA含量影响具有性别差异。Abstract: The present study was to follow up and more clearly elucidate this endocrine disruption by dioxin during the important developmental stages of children.In 2010 and 2011, 37 mother–infant pairs in the exposed region and 44 pairs in the non-exposed region were enrolled in the present study.Dioxin was determined by gas chromatography-mass spectrometry. Saliva steroid hormones were determined by liquid chromatography-tandem mass spectrometry. The results showed that breast milk levels of dioxin congeners in the exposed region (Mean=11.0 pg·lipid−1) were significantly higher than the non-exposed region (Mean=3.4 pg·lipid−1). In the exposed region, dehydroepiandrosterone (DHEA) in saliva of boys was positively correlated with 2,3,7,8-TeCDD (β=0.4235; P=0.0395), 1,2,3,7,8-PeCDD (β=0.4742; P=0.0190), 1,2,3,4,7,8- HxCDD (β=0.4949; P=0.0140), 1,2,3,6,7,8-HxCDD (β=0.4745; P=0.0327), TEQ PCDD (β=6566; P=0.0005), and TEQ PCDD/DF(β=0.6137; P=0.0014) at the age of 1 (P < 0.05) and negatively correlated with 1,2,3,7,8-PeCDD (β=−0.5925; P=0.0057), 1,2,3,6,7,8- HxCDD (β=−0.6350; P=0.0026), and 1,2,3,7,8,9-HxCDD (β=−0.5623; P=0.0108) at the age of 5 (P<0.05).An increase in maternal dioxins related to increased DHEA levels in male salivary samples. However, an increase dioxin related to decreased DHEA levels in female salivary samples at the age of 1 (P<0.05), but not at the age of 5 (P>0.05). Our founding suggested that the effect of perinatal dioxin exposure on children's early DHEA content has gender differences.
-
Key words:
- dioxin /
- children /
- steroid hormones /
- cohort study
-
表 1 不同地区儿童生长指标测量结果比较
Table 1. Demographic characteristics of participants
指标 男童 Boy 女童 Girl 暴露地区
Exposed
(n=25)非暴露地区
Non-exposed
(n=22)F P 暴露地区
Exposed
(n=12)非暴露地区
Non-exposed
(n=22)F P 1岁儿童 身高/m 0.63±0.04 0.59±0.04 11.72 0.001 0.59±0.05 0.57±0.05 2.17 0.151 体重 /kg 6.5±1.3 5.2±1.1 14.62 0.000 5.4±1.1 4.6±1.0 4.17 0.049 体质指数/(kg·m−2) 16.1±1.6 14.8±1.4 10.40 0.002 15.4±1.5 14.4±1.7 3.18 0.084 头围 /cm 40.0±1.9 38.6±1.6 6.99 0.011 38.3±1.8 37.6±1.7 1.38 0.249 胸围 /cm 41.7±3.1 38.9±3.1 10.86 0.002 39.0±2.6 37.4±3.1 2.19 0.149 3 岁儿童 身高/m 0.99±0.03 0.93±0.05 18.16 0.000 0.96±0.03 0.90±0.03 22.28 0.000 体重/kg 16.9±3.2 13.5±1.3 23.05 0.000 14.5±1.2 12.4±1.4 16.74 0.000 体质指数/(kg·m−2) 17.2±2.3 15.5±1.1 11.03 0.005 15.7±0.8 15.3±1.2 1.13 0.296 头围/cm 50.2±1.4 48.5±1.3 16.93 0.000 48.8±1.5 47.4±1.0 9.56 0.004 胸围/cm 55.7±4.3 50.2±2.5 27.48 0.000 51.7±1.5 49.0±1.8 18.07 0.000 5 岁儿童 身高/m 1.14±0.04 1.09±0.06 7.57 0.009 1.11±0.09 1.05±0.08 29.38 0.000 体重 /kg 23.0±4.7 17.8±2.5 21.78 0.000 20.2±2.2 14.8±2.5 33.44 0.000 体质指数/(kg·m−2) 17.7±2.9 14.9±1.4 18.62 0.000 15.7±1.6 14.5±1.2 5.75 0.023 头围/cm 51.5±1.3 50.2±1.1 14.35 0.001 50.9±1.5 49.6±1.0 7.89 0.009 胸围/cm 59.5±7.3 54.3±3.8 23.73 0.000 56.8±3.3 52.2±2.3 22.76 0.000 表 2 不同地区母乳中二噁英含量比较
Table 2. comparison of dioxins levels in breast milk between exposed and non-exposed regions
化合物 暴露地区/pg(lipid)
Exposed
(n = 37)非暴露地区/pg(lipid)
Non-exposed
(n = 44)P F M P25—P75 M P25—P75 2,3,7,8-TeCDD 2.0 1.0—3.6 0.5 0.4—0.9 13.87 <0.0001 1,2,3,7,8-PeCDD 2.8 2.0—4.2 1.1 0.7—1.7 49.85 <0.0001 1,2,3,4,7,8-HxCDD 1.4 1.0—2.0 0.8 0.5—1.4 19.05 <0.0001 1,2,3,6,7,8-HxCDD 5.2 2.8—7.4 1.3 0.9—1.7 51.63 <0.0001 1,2,3,7,8,9-HxCDD 1.5 1.1—2.5 0.5 0.4—0.9 39.80 <0.0001 1,2,3,4,6,7,8-HpCDD 8.3 6.0—14.1 2.6 1.8—3.3 36.04 <0.0001 OCDD 58.4 41.0—78.8 15.7 10.5—15.7 62.99 <0.0001 2,3,7,8-TeCDF 0.5 0.3—0.6 0.7 0.4—0.9 5.30 0.0079 1,2,3,7,8-PeCDF 0.5 0.4— 0.7 0.4 0.2—0.6 1.50 0.1883 2,3,4,7,8-PeCDF 4.1 3.4—5.4 3.1 2.4—3.8 15.08 0.0002 1,2,3,4,7,8-HxCDF 6.3 5.1—10.0 1.6 1.3—2.0 34.79 <0.0001 1,2,3,6,7,8-HxCDF 4.0 2.9—5.7 1.4 1.0—1.5 32.40 <0.0001 1,2,3,7,8,9-HxCDF 0.3 0.2—0.6 0.3 0.2—0.4 1.77 0.5888 2,3,4,6,7,8-HxCDF 0.7 0.4—0.9 0.6 0.3—0.8 4.54 0.1347 1,2,3,4,6,7,8-HpCDF 4.6 3.1— 5.6 1.1 0.8—1.5 24.76 <0.0001 1,2,3,4,7,8,9-HpCDF 0.7 0.3—1.1 0.2 0.2—0.3 24.78 <0.0001 OCDF 0.6 0.5—1.0 0.6 0.5—0.8 0.02 0.8783 TEQ Total PCDDs 8.1 5.7—11.3 2.3 1.6—3.5 67.99 <0.0001 Total PCDFs 2.4 1.7—3.1 1.1 0.9—1.2 29.38 <0.0001 Total PCDDs + PCDFs 11.0 7.5—15.1 3.4 2.5—4.3 74.40 <0.0001 表 3 不同地区儿童唾液类固醇激素比较
Table 3. Comparison of saliva steroid hormone levels between exposed and non-exposed region
男孩 Boy 女孩 Girl 暴露地区
Exposed
(n=25)非暴露地区
Non-exposed
(n=22)P 暴露地区
Exposed
(n=12)非暴露地区
Non-exposed
(n=22)P M P25—P75 M P25—P75 M P25—P75 M P25—P75 1岁儿童 可的松/ (pg·mL−1) 757 597—1261 766 623—1146 0.9150 1065 760—1530 860 562—1264 0.36760 DHEA/(pg·mL−1) 105 79—105 25 17—46 <0.0001 124 75—168 32 23—53 <0.0001 3 岁儿童 可的松/ (pg·mL−1) 550 309—972 857 475—1134 0.1012 541 226—1210 449 295—749 0.9533 DHEA/ (pg·mL−1) 156 92—262 189 78—439 0.5671 206 76—440 208 154—323 0.9117 睾酮/ (pg·mL−1) 2.0 1.1—3.4 2.8 2.0—4.7 0.0848 2.3 2.0—6.6 3.1 1.6—4.5 0.0021 5 岁儿童 可的松/ (pg·mL−1) 829 440—1202 522 372—824 0.1807 714 85—1165 756 339—1066 0.4319 DHEA /(pg·mL−1) 79 40—140 339 273—761 <0.0001 97 61—178 675 320—924 <0.0001 睾酮/ (pg·mL−1) 1.0 1.0—2.0 4.5 2.7—7.9 <0.0001 1.2 1.0—1.7 7.0 3.2—13.2 <0.0001 -
[1] 陈玫宏, 郭敏, 刘丹, 等. 典型内分泌干扰物在太湖及其支流水体和沉积物中的污染特征 [J]. 中国环境科学, 2017, 37(11): 4323-4332. doi: 10.3969/j.issn.1000-6923.2017.11.038 CHEN M H, GUO M, LIU D, et al. Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries [J]. China Environmental Science, 2017, 37(11): 4323-4332(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.11.038
[2] 刘帅, 张震, 宋国君, 等. 北京某垃圾焚烧厂二噁英多介质扩散风险评估 [J]. 中国公共卫生, 2018, 34(9): 1224-1228. doi: 10.11847/zgggws1117325 LIU S, ZHANG Z, SONG G J, et al. Health risk assessment on dioxin emission from a waste incineration plant in Beijing city based on multi-medium diffusion model [J]. Chinese Journal of Public Health, 2018, 34(9): 1224-1228(in Chinese). doi: 10.11847/zgggws1117325
[3] 罗挺, 陈敏慧, 罗云程, 等. 二噁英暴露与6种疾病流行: 越南成年男性的健康研究 [J]. 环境化学, 2019, 38(8): 1669-1675. doi: 10.7524/j.issn.0254-6108.2018093003 LUO T, CHEN M H, LUO Y C, et al. Dioxin exposure and six kind of diseases prevalence: Vietnamese men health study [J]. Environmental Chemistry, 2019, 38(8): 1669-1675(in Chinese). doi: 10.7524/j.issn.0254-6108.2018093003
[4] MANH HD, KDIO T, OKAMOTO R, et al. Serum dioxin levels in Vietnamese men more than 40 years after herbicide spraying [J]. Environmental Science & Technology, 2014, 48(6): 3496-3503. [5] MANH H D, KIDO T, TAI P T, et al. Levels of polychlorinated dibenzodioxins and polychlorinated dibenzofurans in breast milk samples from three dioxin-contaminated hotspots of Vietnam [J]. Science of The Total Environment, 2015, 511: 416-422. doi: 10.1016/j.scitotenv.2014.12.083 [6] NGHI T N, NISHIJO M, MANH H D, et al. Dioxins and nonortho PCBs in breast milk of Vietnamese mothers living in the largest hot spot of dioxin contamination [J]. Environmental Science & Technology, 2015, 49(9): 5732-5742. [7] SCHECTER A, DAI LC, THUY L, et al. Agent orange and the Vietnamese: The persistence of elevated dioxin levels in human tissues [J]. American Journal of Public Health, 1995, 85(4): 516-522. doi: 10.2105/AJPH.85.4.516 [8] DWERNYCHUK LW. Dioxin hot spots in Vietnam [J]. Chemosphere, 2005, 60(7): 998-999. doi: 10.1016/j.chemosphere.2005.01.052 [9] Institute of medicine, 2009. Veterans and Agent Orange: update 2008. Washington, DC: National Academy Press 2009[EB/R]. [2009-12-2].https://www.nap.edu/catalog/12662/veterans-and-agent-orange-update-2008. [10] NISHIJO M, PHAM T T, NGUYEN A T N, et al. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin in breast milk increases autistic traits of 3-year-old children in Vietnam [J]. Molecular Psychiatry, 2014, 19(11): 1220-1226. doi: 10.1038/mp.2014.18 [11] TAI P T, NISHIJO M, NGHI T N, et al. Effects of perinatal dioxin exposure on development of children during the first 3 years of life [J]. The Journal of Pediatrics, 2016, 175: 159-166.e2. doi: 10.1016/j.jpeds.2016.04.064 [12] SUN XL, KIDO T, HONMA S, et al. The relationship between dioxins exposure and risk of prostate cancer with steroid hormone and age in Vietnamese men [J]. Science of The Total Environment, 2017, 595: 842-848. doi: 10.1016/j.scitotenv.2017.04.013 [13] SCHECTER A, PAPKE O, BALL M. Evidence for transplacental transfer of dioxins from mother to fetus: Chlorinated dioxin and dibenzofuran levels in the livers of stillborn infants [J]. Chemosphere, 1990, 21(8): 1017-1022. doi: 10.1016/0045-6535(90)90124-C [14] SUZUKI G, NAKANO M, NAKANO S. Distribution of PCDDs/PCDFs and co-PCBs in human maternal blood, cord blood, placenta, milk, and adipose tissue: Dioxins showing high toxic equivalency factor accumulate in the placenta [J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(10): 1836-1847. doi: 10.1271/bbb.69.1836 [15] WANG S L, LIN C, GUO Y L, et al. Infant exposure to polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls (PCDD/Fs, PCBs): Correlation between prenatal and postnatal exposure [J]. Chemosphere, 2004, 54(10): 1459-1473. doi: 10.1016/j.chemosphere.2003.08.012 [16] BODA H, NGHI T N, NISHIJO M, et al. Prenatal dioxin exposure estimated from dioxins in breast milk and sex hormone levels in umbilical cord blood in Vietnamese newborn infants [J]. The Science of the Total Environment, 2018, 615: 1312-1318. doi: 10.1016/j.scitotenv.2017.09.214 [17] CAO Y G, WINNEKE G, WILHELM M, et al. Environmental exposure to dioxins and polychlorinated biphenyls reduce levels of gonadal hormones in newborns: Results from the Duisburg cohort study [J]. International Journal of Hygiene and Environmental Health, 2008, 211(1/2): 30-39. [18] GOUDARZI H, ARAKI A, ITOH S, et al. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid and androgenic hormones in cord blood samples: The Hokkaido study [J]. Environmental Health Perspectives, 2017, 125(1): 111-118. doi: 10.1289/EHP142 [19] RENNERT A, WITTSIEPE J, KASPER-SONNENBERG M, et al. Prenatal and early life exposure to polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls may influence dehydroepiandrosterone sulfate levels at prepubertal age: Results from the Duisburg birth cohort study [J]. Journal of Toxicology and Environmental Health, Part A, 2012, 75(19/20): 1232-1240. [20] SATHYANARAYANA S, BUTTS S, WANG C, et al. Early prenatal phthalate exposure, sex steroid hormones, and birth outcomes [J]. The Journal of Clinical Endocrinology & Metabolism, 2017, 102(6): 1870-1878. [21] ANH L T, KIDO T, HONMA S, et al. A relationship in adrenal androgen levels between mothers and their children from a dioxin-exposed region in Vietnam [J]. The Science of the Total Environment, 2017, 607/608: 32-41. doi: 10.1016/j.scitotenv.2017.06.264 [22] DWERNYCHUK L W, CAU H D, HATFIELD C T, et al. Dioxin reservoirs in southern vietnam-A legacy of agent orange [J]. Chemosphere, 2002, 47(2): 117-137. doi: 10.1016/S0045-6535(01)00300-9 [23] MANH H D, KIDO T, OKAMOTO R, et al. The relationship between dioxins and salivary steroid hormones in Vietnamese primiparae [J]. Environmental Health and Preventive Medicine, 2013, 18(3): 221-229. doi: 10.1007/s12199-012-0310-x [24] van den BERG M, BIRNBAUM L S, DENISON M, et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds [J]. Toxicological Sciences, 2006, 93(2): 223-241. doi: 10.1093/toxsci/kfl055 [25] ISZATT N, STIGUM H, GOVARTS E, et al. Perinatal exposure to dioxins and dioxin-like compounds and infant growth and body mass index at seven years: A pooled analysis of three European birth cohorts [J]. Environment International, 2016, 94: 399-407. doi: 10.1016/j.envint.2016.04.040 [26] WANG Z, HANG J G, FENG H, et al. Effects of perinatal dioxin exposure on development of children: A 3-year follow-up study of China cohort [J]. Environmental Science and Pollution Research, 2019, 26(20): 20780-20786. doi: 10.1007/s11356-019-05362-0 [27] MIYASHITA C, ARAKI A, MITSUI T, et al. Sex-related differences in the associations between maternal dioxin-like compounds and reproductive and steroid hormones in cord blood: The Hokkaido Study [J]. Environment International, 2018, 117: 175-185. doi: 10.1016/j.envint.2018.04.046 [28] LI L A, WANG P W. PCB126 induces differential changes in androgen, cortisol, and aldosterone biosynthesis in human adrenocortical H295R cells [J]. Toxicological Sciences, 2005, 85(1): 530-540. doi: 10.1093/toxsci/kfi105 [29] MILLER W L, AUCHUS R J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders [J]. Endocrine Reviews, 2011, 32(1): 81-151. doi: 10.1210/er.2010-0013 [30] OANH NTP, KIDO T, HONMA S, et al. Androgen disruption by dioxin exposure in 5-year-old Vietnamese children: Decrease in serum testosterone level [J]. Science of The Total Environment, 2018, 640-641: 466-474. doi: 10.1016/j.scitotenv.2018.05.257 [31] BHATT M R, KHATRI Y, RODGERS R J, et al. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17, 20-lyase (P450 17A1) [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 170: 2-18. doi: 10.1016/j.jsbmb.2016.02.033 [32] KIDO T, HONMA S, NHU D D, et al. Inverse association of highly chlorinated dioxin congeners in maternal breast milk with dehydroepiandrosterone levels in three-year-old Vietnamese children [J]. The Science of the Total Environment, 2016, 550: 248-255. doi: 10.1016/j.scitotenv.2016.01.025 [33] REGE J, NAKAMURA Y, SATOH F, et al. Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation [J]. The Journal of Clinical Endocrinology & Metabolism, 2013, 98(3): 1182-1188. [34] STÁRKA L, DUŠKOVÁ M, HILL M. Dehydroepiandrosterone: a neuroactive steroid [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2015, 145: 254-260. doi: 10.1016/j.jsbmb.2014.03.008 [35] KARMAN B N, BASAVARAJAPPA M S, HANNON P, et al. Dioxin exposure reduces the steroidogenic capacity of mouse antral follicles mainly at the level of HSD17B1 without altering atresia [J]. Toxicology and Applied Pharmacology, 2012, 264(1): 1-12. doi: 10.1016/j.taap.2012.07.031 [36] 施丽丽, 董晶剑, 王凤华, 等. 围产期二噁英暴露对学龄前儿童类固醇激素的影响 [J]. 环境科学学报, 2019, 39(8): 2754-2763. SHI L L, DONG J J, WANG F H, et al. Effects of perinatal dioxin exposure on steroid hormones in preschool children [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2754-2763(in Chinese).