-
汞是一种具有较高毒性和生物累积性的重金属[1-2],其排放源通常分人为排放与自然排放2类。自然排放引起的汞污染约占汞排放总量的1/4,人为排放是汞污染的主要原因[3]。与燃煤电站烟气汞排放污染类似,冶炼行业烟气亦是汞人为排放的重要来源,其烟气中汞的质量浓度为9.8~30 mg·m−3,为普通燃煤电厂烟气中汞含量的近百倍。即使经过冷凝后回收烟气中部分高浓度液态Hg0,但剩余的Hg0含量依然较高,远超国家限制标准[4-5]。因此,亟需探寻清洁高效的冶炼行业烧结烟气Hg0治理方法。
光催化技术由于其绿色、高效和经济等优点已得到迅速发展。其中,TiO2是研究最广泛的光催化剂之一[6],具有高化学稳定性、无毒无害、较高的光电转换效率、低成本等优点。然而,TiO2基光催化剂不能利用资源丰富的太阳能,仅能在紫外线(ultraviolet, UV)照射下获得优异的脱汞性能。寻找高效、可见光驱动且低成本的光催化剂去除Hg0仍是当前一项极具挑战的工作。卤氧化铋BiOX(X=I、Br、Cl)具有成本低、无毒的优点,对有机污染物具有良好的光催化降解性能[7-9]。BiOX是层状结构材料,易在[Bi2O2]2+层和双[X]−层间形成内部静电场,能有效地分离和迁移光生电子-空穴(e−-h+)对[10-11]。三者之中,BiOCl较宽的禁带宽度限制了其可见光催化性能;BiOI则具有较窄的禁带宽度(1.77~1.92 eV)及较宽的可见光响应范围,致使其光生e−-h+对复合率较高,其光催化性能也不理想[12]。
有学者通过多种方法,如控制形貌[13]、引入氧空位[14]、离子掺杂[15]和构建异质结[16]等来提高BiOX的光催化能力。SUDHARANI[17]等采用简便水热法合成了BiOI和30%CuO/BiOI纳米复合材料,并发现与BiOI相比,纳米花状30%CuO/BiOI光催化剂在60 min内对MO的降解效率能提升40%。陈颖等[18]采用改进Hummers法制备出还原氧化石墨烯(reduced graphene oxide, RGO)并利用微波蚀刻法将其与BiOCl/Bi2WO6耦合,发现n(Bi2WO6):n(RGO-BiOCl/Bi2WO6)为50%时,降解率可达94.6%,远高于BiOCl。张群等[19]采用水热法制备出BiOI/BiOBr催化剂,发现荧光照射下的RhB脱色率高达100%,为BiOBr的1.5倍。复合光催化剂在降解有机污染物方面有优异表现,而卤氧化铋基复合光催化剂对气态单质汞降解的研究较少[20-21]。宽带隙能BiOCl和窄带隙能BiOI属于结构相似的层状结构BiOX材料。两者的复合可能综合各自优点,产生一种性能优异的光催化复合材料[22-23]。
本研究采用化学共沉淀法将BiOCl与BiOI耦合制备出复合光催化材料,在鼓泡式光催化测试平台上研究其在荧光灯辐照下对单质汞(Hg0)的脱除性能,通过N2吸附-脱附、扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见漫反射光谱(UV-vis DRS)、X射线光电子能谱(XPS)和电子自旋共振(ESR)等表征手段进行分析测试,以阐明复合光催化剂物理化学结构与脱汞性能间的关系。
共沉淀法制备BiOI/BiOCl复合微球及其光催化脱汞性能
BiOI/BiOCl composite microspheres prepared by coprecipitation method and their photocatalytic performance for mercury removal
-
摘要: 为提升BiOCl光催化活性以克服其可见光响应能力差的问题,采用共沉淀法制备出三维BiOI/BiOCl复合微球光催化剂。利用N2吸附-脱附、扫描电子显微镜、X射线衍射、紫外-可见漫反射光谱、X射线光电子能谱和电子自旋共振等方法对复合材料的孔隙特征、形貌、成分、光学性质等进行详细地表征,并通过一系列实验研究了BiOI/BiOCl摩尔比、荧光灯辐照、光催化剂剂量、无机阴离子和清除剂等因素对复合材料湿法脱除Hg0性能的影响。研究结果显示,当BiOI/BiOCl摩尔比为1:9时,其脱汞效率高达96 %,是BiOI的1.4倍,BiOCl的2.7倍。与单独使用BiOI/BiOCl光催化剂相比,荧光灯与BiOI/BiOCl光催化剂联合能极大的提高Hg0脱除效率。含有CO32−的反应溶液会抑制BiOI/BiOCl光催化剂对Hg0的脱除,而Cl−、NO3−和SO42−对脱汞效率影响较小。自由基捕获实验表明阴离子超氧自由基(·O2−)和空穴(h+)是去除Hg0的主要活性物质。根据实验结果、表征分析和密度泛函理论(DFT)提出了复合光催化剂的电荷转移过程及其脱除气态Hg0机理,以期为湿法高效脱除Hg0提供参考。Abstract: In order to improve the photocatalytic activity of BiOCl and overcome the problem of poor visible light response, three-dimensional BiOI/BiOCl composite microspheres were prepared by coprecipitation method. N2 adsorption-desorption, scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and electron spin resonance were employed to characterize the pore characteristics, morphology, composition and optical properties of the composites in detail. A series of experiments were carried out to study the influences of BiOI/BiOCl molar ratio, fluorescent lamp irradiation, photocatalyst dose, inorganic anions and scavengers on the performance of Hg0 removal by wet method. The results exhibited that when the molar ratio of BiOI/BiOCl was 1:9, the Hg0 removal efficiency was up to 96%, which was 1.7 times that of BiOI and 2.7 times that of BiOCl. Compared with BiOI/BiOCl photocatalyst alone, the combination of fluorescent lamp and BiOI/BiOCl photocatalyst could greatly improve the removal efficiency of Hg0. The reaction solution containing CO32− inhibited the removal of Hg0 over BiOI/BiOCl photocatalyst, while Cl−, NO3− and SO42− possessed little effect on the removal efficiency. Free radical trapping experiments showed that anionic superoxide radicals (•O2−) and holes (h+) were the main active substances for Hg0 removal. According to the experimental results, characterization analysis and Density Functional Theory (DFT) calculation, the charge transfer process of the composite photocatalyst and its mechanism of gaseous Hg0 removal were proposed to provide a reference for efficient Hg0 removal by wet method.
-
Key words:
- photocatalyst /
- BiOCl /
- BiOI /
- heterojunction /
- elemental mercury
-
-
[1] 巩玥, 刘俐媛, 陈扬. 基于专利计量的汞污染治理技术态势分析[J]. 环境工程学报, 2019, 13(6): 1473-1487. doi: 10.12030/j.cjee.201903029 [2] HAN R R, ZHOU B H, HUANG Y Y, et al. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018[J]. Journal of Cleaner Production, 2020, 276: 123249. doi: 10.1016/j.jclepro.2020.123249 [3] 高星, 刘潇, 武新斌, 等. 燃煤电厂典型超低排放除尘技术组合下的尘排放特性[J]. 环境工程学报, 2020, 14(1): 181-188. doi: 10.12030/j.cjee.201903055 [4] HONG Q Q, ZHANG X F, ZHU R L, et al. Resource utilization of natural pyrite (FeS2) as the tailings after flotation of natural sphalerite (ZnS) for reclaiming high concentrations of gaseous Hg0 from Zn smelting flue gas[J]. Chemical Engineering Journal, 2022, 427: 131644. doi: 10.1016/j.cej.2021.131644 [5] MEI J, WANG C, KONG L N, et al. Remarkable improvement of Ti incorporation on Hg0 capture from smelting flue gas by sulfurated γ-Fe2O3: Performance and mechanism[J]. Journal of Hazardous Materials, 2020, 381: 120967. doi: 10.1016/j.jhazmat.2019.120967 [6] 刘布雷, 张改, 高敏, 等. La3+/TiO2中空微球的制备及模型汽油光催化氧化脱硫性能[J]. 环境工程学报, 2018, 12(12): 3371-3378. doi: 10.12030/j.cjee.201806135 [7] CHEN Q, CHENG X R, LONG H M, et al. A short review on recent progress of Bi/semiconductor photocatalysts: The role of Bi metal[J]. Chinese Chemical Letters, 2020, 31(10): 2583-2590. doi: 10.1016/j.cclet.2020.08.018 [8] ZHOU Y, ZHANG Q, LIN Y H, et al. One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: In situ growth monitoring and photocatalytic activity studies[J]. Science China(Chemistry), 2013, 56(4): 435-442. [9] HANKWON L, SHER B R. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation[J]. Progress in Natural Science:Materials International, 2017, 27(3): 289-296. doi: 10.1016/j.pnsc.2017.04.003 [10] 赫荣安, 曹少文, 周鹏, 等. 可见光铋系光催化剂的研究进展[J]. 催化学报, 2014, 35(7): 989-1007. [11] CHEN X L, PAUL R, DAI L M. Carbon-based super capacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489. doi: 10.1093/nsr/nwx009 [12] LI C, LI H J, He G C, et al. Preparation and photocatalytic performance of ZnO/Sepiolite composite materials[J]. Advances in Materials Science and Engineering, 2021, 24: 1-17. [13] HU J, WENG S X, ZHENG Z Y, et al. Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water[J]. Journal of Hazardous Materials, 2014, 264: 293-302. doi: 10.1016/j.jhazmat.2013.11.027 [14] CAI Y J, LI D Y, SUN J Y, et al. Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties[J]. Applied Surface Science, 2018, 439: 697-704. doi: 10.1016/j.apsusc.2018.01.089 [15] ZHANG L P, MA Z Q, XU H, et al. Preparation of upconversion Yb3+ doped microspherical BiOI with promoted photocatalytic performance[J]. Solid State Sciences, 2018, 75: 45-52. doi: 10.1016/j.solidstatesciences.2017.11.008 [16] WANG Y C, ZHANG A C, ZHANG D, et al. Ultra-low loading of Ag2CrO4 on BiOI/CoFe2O4 microsphere with p-n heterojunction: highly improved photocatalytic performance for Hg0 removal and mechanism insight[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2020, 396: 112543. doi: 10.1016/j.jphotochem.2020.112543 [17] SUDHARANI A, SUNIL K K, MANGIRI R, et al. Morphology driven enhanced photocatalytic activity of CuO/BiOI Nanocomposites[J]. Materials Chemistry and Physics, 2020, 258: 123891. [18] 陈颖, 韩星月, 梁宏宝, 等. 微波蚀刻法制备RGO-BiOCl/Bi2WO6异质结型催化剂及其催化性能[J]. 化工学报, 2018, 69(4): 1758-1764. [19] 张群, 鲍玥, 周旻昀, 等. 高效BiOI/BiOBr可见光催化剂的制备性能及机理研究[J]. 浙江大学学报(理学版), 2017, 44(4): 472-479. [20] SUN X M, LU J, WU J, et al. Enhancing photocatalytic activity on gas-phase heavy metal oxidation with self-assembled BiOI/BiOCl microflowers[J]. Journal of Colloid and Interface Science, 2019, 546: 32-42. doi: 10.1016/j.jcis.2019.03.049 [21] ZHAO X Y, WU J, SUN X M, et al. Rational design bionic flower-like BiOBr0.5I0.5/WS2 Z-scheme heterojunction for efficient oxidation of Hg0: Synergistic effect of facets exposed and intrinsic defects[J]. Chemical Engineering Journal, 2021, 416: 129537. doi: 10.1016/j.cej.2021.129537 [22] ZHANG P F, LIANG H O, LIU H, et al. A novel Z-scheme BiOI/BiOCl nanofibers photocatalyst prepared by one-pot solvothermal with efficient visible-light-driven photocatalytic activity[J]. Materials Chemistry and Physics, 2021, 272: 125031. doi: 10.1016/j.matchemphys.2021.125031 [23] LIU H H, YANG C, HUANG J, et al. Ionic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance[J]. Inorganic Chemistry Communications, 2020, 113: 107806. doi: 10.1016/j.inoche.2020.107806 [24] ZHANG A C, ZHANG L X, LU H, et al. Facile synthesis of ternary Ag/AgBr-Ag2CO3 hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light[J]. Journal of Hazardous Materials, 2016, 314: 78-87. doi: 10.1016/j.jhazmat.2016.04.032 [25] XIAOY X, JI Z, ZOU C, et al. Construction of CeO2/BiOI S-scheme heterojunction for photocatalytic removal of elemental mercury[J]. Applied Surface Science, 2021, 556: 149767. doi: 10.1016/j.apsusc.2021.149767 [26] HU X L, LI C Q, SUN Z M, et al. Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light[J]. Building and Environment, 2020, 168: 106481. doi: 10.1016/j.buildenv.2019.106481 [27] AHMAD N, MOHAMMAD H, EBRAHIM A A, et al. Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes[J]. Separation and Purification Technology, 2019, 221: 101-113. doi: 10.1016/j.seppur.2019.03.075 [28] SUN Y Y, LI G Y, WANG W J, et al. Photocatalytic defluorination of perfluorooctanoic acid by surface defective BiOCl: Fast microwave solvothermal synthesis and photocatalytic mechanisms[J]. Journal of Environmental Sciences, 2019, 84(10): 69-79. [29] ZHENG H X, CHEN G Y, ZHANG A C, et al. Enhanced photocatalytic activity of Bi24O31Br10 microsheets constructing heterojunction with AgI for Hg0 removal[J]. Separation and Purification Technology, 2021, 262: 118296. doi: 10.1016/j.seppur.2020.118296 [30] 张亮, 赵朝成, 高先瑶, 等. MoS2/BiOI复合光催化剂制备及其光催化氧化还原性能[J]. 环境科学, 2019, 40(1): 281-292. [31] SUN X M, WU J, LIU Q Z, et al. Mechanism insights into the enhanced activity and stability of hierarchical bismuth oxyiodide microspheres with selectively exposed (0 0 1) or (1 1 0) facets for photocatalytic oxidation of gaseous mercury[J]. Applied Surface Science, 2018, 455(15): 864-875. [32] CAO T T, CUI H, ZHANG Q W, et al. Facile synthesis of Co(II)-BiOCl@biochar nanosheets for photocatalytic degradation of p-n itrophenol under vacuum ultraviolet (VUV) irradiation[J]. Applied Surface Science, 2021, 559: 149938. doi: 10.1016/j.apsusc.2021.149938 [33] XU T T, NIU P, WANG S L, et al. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3[J]. Journal of Materials Science and Technology, 2021, 74(15): 128-135. [34] CEN S H, LV X G, LIU Q W, et al. Direct Z-scheme Ag2WO4/BiOCl composite photocatalyst for efficient photocatalytic degradations of dissolved organic impurities[J]. Optik, 2021, 243: 166847. doi: 10.1016/j.ijleo.2021.166847 [35] LIU H, CAO W R, SU Y, et al. Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI[J]. Applied Catalysis B, 2012, 111–112: 271-279. [36] CAO J, ZHAO Y J, LIN H L, et al. Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances[J]. Solid State Chemistry, 2013, 206: 38-44. doi: 10.1016/j.jssc.2013.07.028 [37] 雷倩, 许路, 艾伟, 等. CDs-BOC复合催化剂可见光下活化过硫酸盐降解典型PPCPs[J]. 环境科学, 2021, 42(6): 2885-2895. [38] HUANG H W, TU S C, ZENG C, et al. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation.[J]. Angewandte Chemie International Edition, 2017, 56(39): 11860-11864. doi: 10.1002/anie.201706549 [39] 畅永锋, 梁鹏, 路殿坤, 等. 硫代硫酸盐浸提法修复汞污染土壤及含汞浸出液的光分解回收处理[J]. 环境工程学报, 2020, 14(12): 3527-3533. doi: 10.12030/j.cjee.201911030 [40] SANTIAGO D E, ARANA J, GONZALEZ-D O, et al. Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil[J]. Applied Catalysis B-Environmental, 2014, 156/157: 284-292. doi: 10.1016/j.apcatb.2014.03.022 [41] LIUY X, WANG Y, WANG Q, et al. A study on removal of elemental mercury in flue gas using Fenton solution[J]. Journal of Hazardous Materials, 2015, 292: 164-172. doi: 10.1016/j.jhazmat.2015.03.027 [42] ZHANG X, ZHANG L Z, XIE T F, et al. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures[J]. The Journal of Physical Chemistry C, 2009, 113: 17,7371-7378. [43] FU J W, XU Q L, LOW, J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B:Environmental, 2019, 243: 556-565. doi: 10.1016/j.apcatb.2018.11.011