-
随着我国全面推进生活垃圾分类,并将生活垃圾能源化回收、生物质沼气发电等列入国家能源发展规划,有机固体废弃物厌氧发酵的资源化技术成为研究热点。相较于采用传统湿式厌氧发酵工艺,有机生活垃圾因总固体含量高(TS>15%),更适合采用干式厌氧发酵进行生化处理[1]。近年来,干式厌氧发酵因其具有处理负荷高、沼液产生量少、容积产气率高以及发酵罐体积小等优点而广受关注[2]。目前,我国生活垃圾干式厌氧发酵的研究多处于实验室研究或中试阶段[3-5],工程应用少。相比而言,在欧洲,干式厌氧发酵技术起步早,其研究与应用发展较快[5-7];在过去10多年间,干式厌氧发酵系统的处理能力增加了50%[1]。由于生活饮食习惯不同,我国与欧洲生活垃圾的组成及特性差异大[7-9],且垃圾分类工作基础差,导致我国干式厌氧发酵工程面临原料垃圾量不稳定、有机物组分不高、预处理流程长且效率低、厌氧发酵产气效能低、过程控制难度大[10]等诸多技术问题,因此,需立足于我国国情,研发适于我国生活垃圾物料特性的干式厌氧发酵技术与工艺系统,为生活垃圾高效资源化提供科学技术支撑。
在厌氧发酵过程中,温度是影响厌氧微生物活性的关键参数[11]。通常,高温厌氧发酵的产气效能高于中温和常温厌氧发酵[12-13]。ROCAMORA等[1]综述了干式厌氧发酵的工程应用发现,有机垃圾中温厌氧发酵的单位挥发性固体(VS)去除率下的甲烷产率低于高温。SUN等[14]发现,高温(55 ℃)下啤酒渣和牛粪混合干式厌氧发酵的甲烷产量高于中温(35 ℃),但高温厌氧发酵需要考虑更多的能源输入以及高温下含氮有机物快速分解带来的氨氮抑制等问题[15-17]。因此,大多数厌氧发酵系统选择更稳定的中温条件。为节约运行成本和降低运行能耗,规模化干式厌氧发酵工程在实际运行中常采用非严格受控中温厌氧发酵方式。例如,在环境气温较低时(如冬季)进行加温操作使之维持在一定的运行温度;而在环境气温较高时(如夏季)则不进行干预,但厌氧发酵温度易受环境气温变化影响。目前,有关有机垃圾中温干式厌氧发酵工程的研究仍然较少[10],而中温干式厌氧发酵工程的运行温度受季节变化影响,其产气率、运行稳定性等关键特性的变化与恢复特征有待深入研究。
本研究以北京某生活垃圾干式厌氧发酵工程为对象,基于厌氧发酵温度和环境气温的温差,通过现场调研,考察不同季节下中温干式厌氧发酵的运行温度变化特征,分析温差对该干式厌氧发酵工程产气特征和运行效能的影响,以期为生活垃圾中温干式厌氧发酵工程的精准调控提供参考。
基于温差的规模化生活垃圾干式厌氧发酵工艺的产气特征
Performance of biogas production in a full-scale dry anaerobic digestion of municipal solid waste based on the temperature difference
-
摘要: 以北京某生活垃圾干式厌氧发酵工程为对象,通过对厌氧发酵运行温度与环境气温之间的温差调控,分析了不同季节下中温干式厌氧发酵工艺的产气特征。结果表明,干式厌氧发酵运行温度受环境气温影响较大,夏季平均运行温度最高,VS产气率以夏季和秋季较高,容积有机负荷波动大,不同季节平均容积产气率从高到低依次为:夏季>春季>冬季>秋季。统计分析结果表明,该干式厌氧发酵工程的产气能力与运行温度显著相关(p<0.01),春、夏、冬3季的温差与VS产气率显著相关(p<0.05),秋季温差与缓冲能力显著相关(p<0.05)。因此,在具备较大pH缓冲能力的条件下,加强春秋季变温期的温差调控,通过加温和增加回流比等方式提升春秋季变温期、冬季低温期的厌氧运行温度,并提高夏季容积有机负荷,有助于提高该干式厌氧发酵工程的产气效能和运行稳定性。本研究结果可为工程规模干式厌氧发酵工艺的稳定运行及高效产沼气提供参考。Abstract: A full scale dry anaerobic digestion (AD) plant of municipal solid waste in Beijing was selected in this study to investigate biogas production performance throughout one year on the basis of the difference between the AD operational temperature and the ambient temperature. Results showed that the operational temperature of this dry AD plant was significantly affected by the ambient temperature, and the average operational temperature of the dry AD in summer was higher than that in other seasons, while the biogas production rate per VS was higher in summer and autumn. The organic loading rate (OLR) of the dry AD plant fluctuated greatly, and the order of the average volume biogas production rate from high to low in different seasons was as follows: Summer ((2.44±0.33) m3·(m3·d)−1)> Spring ((2.31±0.28) m3·(m3·d)−1) > Winter ((2.25±0.29) m3·(m3·d)−1)> Autumn ((2.10±0.14) m3·(m3·d)−1). Results of correlation analysis showed that the gas production performance of the dry AD was significantly corelated with the operational temperature of the dry AD (p<0.01). The temperature differences in Spring, Summer and Winter were significantly related to the VS biogas production rate (p<0.05), and that in autumn was significantly related to buffer capacity (p<0.05). In a word, it was recommended to strengthen the control of temperature difference in the ambient temperature change period in Spring and Autumn. It was recommended that as far as the improvement of biogas production and operational stability of the full-scale dry AD plant was concerned, the operational temperature of the dry AD plant in the Spring, Autumn, and Winter should be increased by heating and increasing the return ratio, as well as increasing the OLR of the dry AD plant in summer with adequate pH buffer capacity. This study can provide a practical reference for the stable operation and efficient biogas production of engineering-scale dry digestion of municipal solid waste.
-
表 1 不同季节下生活垃圾干式厌氧发酵工程的主要运行参数变化特征
Table 1. Major operational parameters of the full-scale dry anaerobic digestion plant
季节 日期 历时/d 环境
气温/℃厌氧发酵
温度/℃温差/
℃进料量/
(t·d−1)进料
TS/%进料
VS∶TS/%日产气量/
(m3·d−1)VS产气率/
(m3·kg−1)春 3.14-5.20 68 14.90±4.99 27.35±0.68 12.45 40.59±18.14 45.06±4.23 50.72±11.26 9 236±1 111 1.01±0.40 夏 5.21-10.02 135 25.74±2.79 29.17±1.12 3.43 34.01±29.60 44.41±5.02 46.85±4.41 9 742±1325 1.38±0.74 秋 10.03-11.12 41 12.15±2.93 24.07±2.81 11.92 24.56±17.12 42.28±5.84 52.20±16.36 8 395±563 1.86±0.98 冬 11.13-3.13 121 0.57±3.84 27.20±2.99 26.63 52.74±22.75 37.89±4.00 63.63±8.80 8 983±1 176 0.86±0.53 表 2 生活垃圾干式厌氧发酵工程不同季节的产气率及容积有机负荷(OLR)
Table 2. Biogas production rates and OLRs of the full scale dry anaerobic digestion treating MSW
季节 VS产气率/
(m3·kg−1)容积产气率/
(m3·(m3·d)−1)OLR/
(kg·(m3·d)−1)春 1.01±0.40 2.31±0.28 2.36±1.46 夏 1.38±0.74 2.44±0.33 1.79±1.60 秋 1.86±0.98 2.10±0.14 1.29±1.04 冬 0.86±0.53 2.25±0.29 3.42±1.98 表 3 不同季节下中温干式厌氧发酵各参数的Pearson相关系数
Table 3. Pearson correlation coefficient of various parameters of dry anaerobic digestion in different seasons
指标 |△Tmax| |△Tmin| 平均|△T| 日处理量 日产气量 VS产气率 容积产气率 TVFA/碱度 厌氧VS/TS OLR pH TVFA 碱度 进料TS 厌氧温度 0.743*,
0.206*,
0.236,
0.709*0.542*,
−0.329*,
0.304,
0.651*0.707*,
0.338*,
0.328,
0.690*0.297*,
−0.102,
−0.469*,
−0.254*0.093,
−0.426*,
−0.479*,
0.526*−0.337*,
0.160,
0.713*,
0.465*0.093,
−0.426*,
−0.479*,
0.526*−0.063,
−0.335*,
−0.695*,
0.374*−0.011,
0.176,
−0.461,
0.3000.554*,
−0.042,
−0.611*,
−0.280*0.458*,
0.53*,
0.338*,
0.358*−0.015,
−0.310*,
−0.737*,
0.224*0.328*,
0.375*,
0.695*,
−0.555*−0.483,
−0.069,
0.722,
−0.351|△Tmax| 0.786*,
−0.325*,
0.468*,
0.919*0.958*,
0.828*,
0.783*,
0.974*0.172,
−0.065,
0.050,
−0.413*0.123,
0.029,
−0.093,
0.159−0.340*,
0.2429*,
0.192,
0.495*0.123,
0.029,
−0.093,
0.159−0.051,
0.161,
−0.248,
0.019−0.094,
0.070,
0.308,
0.530*0.5449*,
−0.219*,
−0.019,
-0.501*0.376*,
−0.179*,
0.139,
0.298*−0.024,
0.143,
−0.194,
-0.1790.294*,
−0.110,
0.249,
−0.214*−0.174,
−0.481,
0.362,
−0.461*|△Tmin| 0.8934*,
−0.350*,
0.912*,
0.984*−0.024,
0.208*,
−0.141,
−0.466*0.047,
0.298*,
−0.173,
0.154−0.170,
−0.205*,
0.331,
0.475*0.047,
0.298*,
−0.173,
0.154−0.072,
0.078,
−0.289,
−0.027−0.331,
0.020,
−0.163,
0.3900.327*,
0.224*,
−0.312,
−0.519*0.239,
−0.209*,
0.055,
0.382*−0.048,
0.095,
−0.251,
−0.213*0.188,
−0.103,
0.215,
−0.149−0.262,
0.118,
0.298,
−0.248平均|△T| 0.129,
−0.045,
−0.068,
−0.452*0.115,
−0.025,
−0.165,
0.159−0.293*,
0.252*,
0.315,
0.494*0.115,
−0.025,
−0.165,
0.159−0.025,
0.090,
−0.347*,
−0.007−0.198,
0.113,
0.036,
0.458*0.467*,
−0.146,
−0.217,
−0.52*0.323*,
−0.044,
0.132,
0.352*0.008,
0.099,
−0.289,
−0.202*0.248,
−0.045,
0.296,
−0.182−0.232,
−0.286,
0.320,
−0.351日处理量 0.110,
0.256*,
0.543*,
−0.049−0.783*,
−0.761*,
−0.888*,
−0.741*0.110,
0.256*,
0.543*,
−0.049−0.023,
0.005,
0.256,
−0.0440.532,
−0.137,
−0.249,
0.0220.906*,
0.996*,
0.962*,
0.929*0.217,
0.199*,
−0.209,
0.0050.006,
0.152,
0.292,
0.0730.132,
0.166,
−0.221,
0.182*−0.095,
0.702*,
0.668,
−0.196日产气量 0.549*,
−0.103,
−0.285,
0.2311*1.000,
1.000,
1.000,
1.0000.779*,
0.659*,
0.485*,
0.736*−0.068,
−0.185,
0.368,
0.225−0.162,
0.227*,
0.222,
−0.057−0.427*,
0.039,
−0.316,
−0.0700.779*,
0.619*,
0.5451*,
0.587*−0.669*,
−0.332*,
−0.478*,
−0.675*−0.377,
0.265,
0.395,
−0.138VS产气率 0.549*,
−0.103,
−0.285,
0.231*0.731*,
0.080,
−0.352*,
0.171−0.726,
0.446,
0.132,
0.245−0.851*,
−0.756*,
−0.856*,
−0.695*−0.607*,
0.004,
0.109,
0.0060.721*,
0.025,
−0.378*,
0.056−0.778*,
−0.125,
0.341,
−0.289*−0.344,
−0.571*,
−0.013,
−0.203容积产气率 0.779*,
0.659*,
0.485*,
0.736*−0.068,
−0.185,
0.368,
0.225−0.162,
0.227*,
0.222,
−0.057−0.427*,
0.039,
−0.316,
−0.0700.7799*,
0.619*,
0.545*,
0.587*−0.669*,
−0.332*,
−0.478*,
−0.675*−0.377,
0.265,
0.395,
−0.138TVFAs/碱度 −0.216,
−0.045,
0.507,
0.242−0.427*,
−0.014,
0.190,
−0.004−0.443*,
−0.701*,
−0.6421*,
−0.0920.986*,
0.977*,
0.9656*,
0.958*−0.882*,
−0.937*,
−0.9428*,
−0.8845*−0.605,
0.354,
−0.210,
0.054厌氧VS/TS 0.846*,
−0.169,
−0.124,
−0.076−0.278,
0.069,
−0.718,
0.019−0.237,
−0.058,
0.446,
0.204−0.051,
0.114,
−0.712,
−0.159−0.149,
−0.561,
−0.978,
−0.405OLR 0.604*,
−0.098,
−0.006,
0.003−0.411*,
0.053,
0.214,
0.1340.561*,
0.042,
−0.162,
0.192*0.031,
0.613*,
0.068,
0.089pH −0.411*,
0.389*,
−0.549*,
0.289*0.606*,
0.777*,
0.702*,
0.584*0.586,
−0.138,
−0.231,
−0.288TVFAs −0.829*,
−0.031,
−0.883*,
−0.395*−0.626,
0.419,
−0.121,
0.132碱度 0.465,
−0.392,
0.108,
0.096注:每组数据从左至右、再从上至下分别为春、夏、秋、冬不同季节各参数的Pearson相关系数;*代表在0.05水平上显著相关。 -
[1] ROCAMORA I, WAGLAND S T, VILLA R, et al. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance[J]. Bioresource Technology, 2020, 299: 122681. doi: 10.1016/j.biortech.2019.122681 [2] 吕凡, 章骅, 邵立明, 等. 基于物质流分析餐厨垃圾厌氧消化工艺的问题与对策[J]. 环境卫生工程, 2017, 25(1): 1-9. doi: 10.3969/j.issn.1005-8206.2017.01.001 [3] 彭绪亚, 贾传兴, 潘坚, 等. 餐厨垃圾单相厌氧消化系统酸化预警指标[J]. 土木建筑与环境工程, 2011, 33(4): 146-150. [4] 王金辉. 餐厨垃圾固相物料干式厌氧消化处理研究[D]. 宁波: 宁波大学, 2017. [5] 刘建伟, 夏雪峰, 葛振. 城市有机固体废弃物干式厌氧发酵技术研究和应用进展[J]. 中国沼气, 2015, 33(4): 10-17. doi: 10.3969/j.issn.1000-1166.2015.04.002 [6] 党锋, 毕于运, 刘研萍, 等. 欧洲大中型沼气工程现状分析及对我国的启示[J]. 中国沼气, 2014, 32(1): 79-83+89. doi: 10.3969/j.issn.1000-1166.2014.01.017 [7] PANIGRAHI S, DUBEY B K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste[J]. Renewable Energy, 2019, 143: 779-797. doi: 10.1016/j.renene.2019.05.040 [8] MA S, ZHOU C, CHI C, et al. Estimating Physical Composition of Municipal Solid Waste in China by Applying Artificial Neural Network Method[J]. Environmental Science Technology, 2020, 54(15): 9609-9617. doi: 10.1021/acs.est.0c01802 [9] NILSSON P S, HELLMAN E, MOESTEDT J. The effect of temperature, storage time and collection method on biomethane potential of source separated household food waste[J]. Waste Management, 2018, 71: 636-643. doi: 10.1016/j.wasman.2017.05.034 [10] KUMAR A, SAMADDER S R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review[J]. Energy, 2020, 197: 117253. doi: 10.1016/j.energy.2020.117253 [11] GRESES S, GABY J C, AGUADO D, et al. Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions[J]. Algal Research, 2017, 27: 121-130. doi: 10.1016/j.algal.2017.09.002 [12] LIU Y, FANG J, TONG X, et al. Change to biogas production in solid-state anaerobic digestion using rice straw as substrates at different temperatures[J]. Bioresource Technology, 2019, 293: 122066. doi: 10.1016/j.biortech.2019.122066 [13] FERNANDEZ-R J, PEREZ M, ROMERO L I. Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: Kinetic analysis[J]. Chemical Engineering Journal, 2013, 232: 59-64. doi: 10.1016/j.cej.2013.07.066 [14] SUN C, LIU F, SONG Z, et al. Feasibility of dry anaerobic digestion of beer lees for methane production and biochar enhanced performance at mesophilic and thermophilic temperature[J]. Bioresource Technology, 2019, 276: 65-73. doi: 10.1016/j.biortech.2018.12.105 [15] LI Q, QIAO W, WANG X, et al. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge[J]. Waste Management, 2015, 36: 77-85. doi: 10.1016/j.wasman.2014.11.016 [16] KOMILIS D, BARRENA R, GRANDO R L, et al. A state of the art literature review on anaerobic digestion of food waste: influential operating parameters on methane yield[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(2): 347-360. doi: 10.1007/s11157-017-9428-z [17] MOMAYEZ F, KARIMI K, TAHERZADEH M J. Energy recovery from industrial crop wastes by dry anaerobic digestion: A review[J]. Industrial Crops and Products, 2019, 129: 673-687. doi: 10.1016/j.indcrop.2018.12.051 [18] 许国栋, 闫园园, 李彩斌, 等. 干式厌氧发酵反应器的中试研究[J]. 中国给水排水, 2020, 36(5): 33-38. doi: 10.19853/j.zgjsps.1000-4602.2020.05.006 [19] 孙树鹏, 张璐, 侯威, 等. 基于非线性相似度量方法研究中国季节划分[J]. 物理学报, 2011, 60(2): 809-815. doi: 10.7498/aps.60.029201 [20] 张旭, 王宝贞, 朱宏. 厌氧消化体系的酸碱性及其缓冲能力[J]. 中国环境科学, 1997(6): 13-17. doi: 10.3321/j.issn:1000-6923.1997.06.004 [21] 郁达伟, 孟晓山, 魏源送. 高负荷厌氧生物反应器的三元酸碱缓冲体系特征与调控[J]. 环境科学学报, 2019, 39(2): 279-289. doi: 10.13671/j.hjkxxb.2018.0224 [22] 刘吉宝, 牛雨彤, 郁达伟, 等. 零价铁对厌氧消化过程中氨氮抑制解除的影响[J]. 环境科学, 2020, 41(8): 1-13. doi: 10.13227/j.hjkx.201912270 [23] ZHAO J, HOU T, LEI Z, et al. Effect of biogas recirculation strategy on biogas upgrading and process stability of anaerobic digestion of sewage sludge under slightly alkaline condition[J]. Bioresource Technology, 2020, 308: 123293. doi: 10.1016/j.biortech.2020.123293 [24] GAO S, HUANG Y, YANG L, et al. Evaluation the anaerobic digestion performance of solid residual kitchen waste by NaHCO3 buffering[J]. Energy Conversion and Management, 2015, 93: 166-174. doi: 10.1016/j.enconman.2015.01.010 [25] SONG Y C, KWON S J, WOO J-H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge[J]. Water Research, 2004, 38(7): 1653-1662. doi: 10.1016/j.watres.2003.12.019