-
河口为陆地-海洋相互作用的重要界面和陆源物质进入海洋的主要过渡区,对于地球表面物质循环具有重要意义。天然和人为源的重金属从陆地到近海水域是以河口为主要运输路径。河口的复杂流体动力学在悬浮物的运输,沉积和再悬浮中起着关键作用[1-2],影响河口邻近海域的重金属的空间分布、转化和生物富集。重金属具有生物毒性、持久性、不可降解性以及广泛的来源性,是对海洋环境的最大威胁之一[3-5]。在2009年黄河口表层海水中溶解态重金属(Cu、Pb、Zn、Cd、Hg和As)的平均浓度分别为2.65、0.51、37.7、0.68、0.013、0.92 µg·L−1。溶解态重金属的含量从黄河口以及其近岸海域到远海逐渐减少说明溶解态重金属的浓度受人类活动、黄河流域污染的影响。据估计黄河能承受的重金属污染物总负荷预估为687 t至1110 t[6-7]。对比过去的研究,黄河三角洲的重金属污染有所增加[8-9]。与1980年代相对比,2001年的黄河河口及其邻近海域的重金属汞的含量高出6倍到8倍[10]。研究认为农业、工业和大气沉降可能是黄河口溶解态重金属的来源,近岸海流、沿海上升流和各理化参数可能是溶解态重金属空间和季节分布的主要影响因素[11]。
黄河是中国第二长河,是世界上悬浮泥沙含量最高的河流,每年向河口输送大量的泥沙对黄河口湿地及其附近海域环境产生影响,过去研究认为黄河口附近海域的重金属含量主要受自然过程影响[12]。近年来黄河流域生态环境逐渐改善,黄河向河口输沙量减少,同时随着黄河流域经济的快速发展,向黄河排放的污染物也在增加。但近些年对黄河口重金属的研究较少,本研究通过研究黄河口邻近海域重金属形态的变化特征,分析重金属来源的变化,弥补这方面的不足,并可为黄河流域的保护和高质量发展提供一定的科学依据。
夏秋季黄河口邻近海域水体中重金属变化特征
Changes of heavy metals in the waters adjacent to the Yellow River estuary in summer and autumn
-
摘要: 2020年夏季和秋季观测了黄河口邻近海域海水中溶解态的重金属(DFe、DPb、DCu、DZn、DCd、DCr、DAs)和颗粒态金属(PFe、PPb、PCu、PZn、PCd、PCr和PAs),以探讨各重金属形态的空间和季节变化及其影响因素,研究重金属的分配系数及其来源差异。结果表明,黄河口邻近海域DFe、DPb、DCu、DZn、DCd、DCr和DAs的浓度平均值分别为45.2、7.33、2.87、18.0、0.0979、3.24、1.65 µg·L−1,溶解态重金属高浓度点主要出现在东营港、黄河入海口以及莱州湾内部。颗粒态金属PFe、PPb、PCu、PZn、PCd、PCr和PAs的浓度平均值分别为1018、6.76、2.38、10.0、0.0195、3.38、1.01 µg·L−1,浓度由河口附近高浓度向周围递减。颗粒态重金属与悬浮颗粒物呈显著正相关性,夏秋两季表层海水中颗粒态重金属浓度均与盐度呈负相关关系。各重金属的富集因子随悬浮颗粒物浓度的增大而减小、随盐度的增大而增大。各金属的分配系数夏季高于秋季。Cu、Zn、Pb和Cr的分配系数随着悬浮颗粒物浓度的增大而减小,Fe、As的分配系数随着盐度的增加而减小,Cu、Zn的分配系数随着盐度的增加而增加。Abstract: In summer and autumn of 2020, dissolved metals (DFe, DPb, DCu, DZn, DCd, DCr, DAs), and particulate metals (PFe, PPb, PCu, PZn, PCd, PCr, PAs) in seawater of the Yellow River estuary were determined to study the spatial and seasonal changes of heavy metals forms, and their influencing factors. The distribution coefficient and sources difference of heavy metals in two seasons were analyzed. The results showed that the average concentrations of DFe, DPb, DCu, DZn, DCd, DCr and DAs in the Yellow River estuary were 45.2, 7.33, 2.87, 18.0, 0.0979, 3.24, 1.65 µg·L−1 respectively. The high concentrations of dissolved heavy metals mainly appeared in Dongying Port, the Yellow River estuary and the interior of Laizhou Bay. The average concentrations of PFe, PPb, PCu, PZn, PCd, PCr and PAs were 018, 6.76, 2.38, 10.0, 0.0195, 3.38, 1.01 µg·L−1 respectively, and the concentration decreased from the high concentrations near the estuary to the surrounding sea areas. There was a significant positive correlation between particulate heavy metals and suspended particulate matter. The concentration of particulate heavy metals in surface seawater in summer and autumn had a significant negative correlation with salinity. The distribution coefficient (Kd) of each heavy metal in summer was higher than that in autumn. Kd of copper, zinc, lead, and chromium decreased with the increase of the concentration of suspended particulate matter. Kd of iron and arsenic decreased with the increase of salinity, and Kd of copper and zinc increased with the increase of salinity.
-
表 1 黄河口海水中各理化参数汇总
Table 1. Spatial variations of physicochemical parameters in the seawater of the Yellow River Estuary.
T/℃ pH 盐度/‰
SalinityTSM/(mg·L−1) COD/(mg·L−1) DO/(mg·L−1) chl a/(µg·L−1) 夏季 表层 范围 23.9—29.6 7.82—8.07 15.0—30.2 6.5—1868 0.90—2.61 4.60—7.96 0.55—5.39 平均值±标准差 26.7 ±1.4 8±0.12 25.1±4.2 93.3±306.8 1.79±0.34 5.99±0.786 2.57±1.21 底层 范围 22.7—29.1 7.80—8.29 19.0—31.9 14.8—1868 1.14—2.61 3.02—7.96 0.51—5.39 平均值±标准差 25.7±1.8 8.00±0.14 27.8±3.4 118±343 1.70±0.35 4.95±1.38 2.74±1.32 秋季 表层 范围 17.4—19.9 8.03—8.38 18.9—28.1 17.7—850 0.67—3.36 5.04—9.52 1.76—8.16 平均值±标准差 18.9±0.62 8.17±0.07 24.9±1. 8 73.8±171.8 1.68±0.61 7.54±0.805 3.88±1.45 表 2 黄河口及世界其它海域Fe、Cu、Zn、Cd、Cr、As的含量
Table 2. The concentrations of Fe、Cu、Zn、Cd、Cr、As in waters from Yellow River Estuary and various world regions
海区
RegionFe/(µg·L−1) Pb/(µg·L−1) Cu /(µg·L−1) Zn/(µg·L−1) Cd/(µg·L−1) Cr/(µg·L−1) As/(µg·L−1) 黄河口溶解态 12.1—188
(42.4)1.05—21.6
(7.29)1.41—21.6
(4.40)10.5—96.0
(21.8)0.0333—0.177
(0.0907)2.54—6.71
(3.27)0.426—3.72
(2.03)黄河口 — 0.42—13.3
(5.61)0.04—31.0
(11.6)1.97—42.2
(14.9)0.10—1.90
(0.66)— 0.16—5.89
(2.59)长江口 — 2.28—2.43
(2.36)2.89—3.66
(3.30)— 0.08—0.09
(0.08)— — 珠江口 — 0.19—4.58
(1.61)0.34—3.26
(1.64)13.54 0.0015—0.30
(0.12)— 0.16—8.18
(2.55)山东半岛
东部海域— 0.52—3.60
(1.51)0.83—5.38
(2.46)2.22—40.7
(17.20)0.08—0.73
(0.17)0.84—3.56
(2.01)ND—1.86
(0.98)辽东湾北部 — 0.60—17.20
(3.98)0.70—6.20
(2.86)1.20—82.80
(17.76)0.10—1.40
(0.66)— 1.92—10.10
(5.46)印度东南沿海 79.60±21.57 0.36±0.06 5.19±2.00 9.31±1.33 0.11±0.05 0.31±0.57 — 表 3 黄河口海水中各重金属浓度汇总
Table 3. Statistics of heavy metals concentrate in the seawater of the Yellow River Estuary.
Fe/(µg·L−1) Pb/(µg·L−1) Cu/(µg·L−1) Zn/(µg·L−1) Cd/(µg·L−1) Cr/(µg·L−1) As/(µg·L−1) 夏季 表层 溶解态 范围 12.9—154 1.05—26.5 1.41—6.83 10.5—45.9 0.03—0.18 2.54—4.71 0.43—2.65 平均值+标准差 45.2±35.0 7.33±5.33 2.87±1.23 18.0±8.37 0.10±0.04 3.24±0.35 1.65±0.54 颗粒态 范围 167—9832 0.58—21.6 0.43—10.6 4.2—29.7 0.004—0.107 0.66—17.3 0.12—6.13 平均值+标准差 1018±1781 6.76±6.15 2.38±2.49 10.0±6.38 0.020±0.025 3.38±4.30 1.01±1.48 底层 溶解态 范围 15.0—188 0.88—19.2 1.68—20.2 11.0—78.1 0.06—0.14 2.91—6.71 1.20—2.46 平均值+标准差 50.8±44.8 5.77±4.38 4.52±4.49 19.9±15.7 0.09±0.03 3.67±0.85 1.87±0.345 颗粒态 范围 129—11323 0.58—17.9 0.57—11.4 5.321—40.1 0.004—0.120 0.61—17.3 0.11—6.68 平均值+标准差 2071±3136 6.13±4.61 2.20±2.99 11.0±9.3 0.02±0.031 3.38±4.73 1.15±1.77 秋季 表层 溶解态 范围 12.1—178.6 0.52—22.8 1.69—50.0 10.5—96.0 0.04—0.12 2.63—3.67 1.25—3.72 平均值+标准差 34.7±27.4 8.85±6.25 8.28±9.52 27.4±19.0 0.08±0.02 2.91±0.18 2.59±0.53 颗粒态 范围 47.0—5988 0.39—7.47 0.39—6.95 4.6—32.0 0.004—0.06 1.00—11.1 0.05—3.07 平均值+标准差 853±1148 1.76±1.43 1.19±0.96 9.8±4.4 0.0117±0.008 2.34±1.85 0.48±0.59 表 4 夏、秋季黄河口邻近海域PFe、PPb、PCu、PZn、PCd、PCr、PAs与环境因子的相关性分析
Table 4. The correlations between PFe, PPb, PCu, PZn, PCd, PCr, PAs and environmental factors of the Yellow River Estuary in summer and autumn
PFe PPb PCu PZn PCd PCr PAs 夏季 TSM 0.64 0.66 0.67 0.63 0.68 0.65 0.68 盐度 −0.54 −0.57 −0.55 −0.60 −0.54 −0.53 −0.53 秋季 TSM 1.00 0.98 0.98 0.62 0.99 1.00 1.00 盐度 −0.55 −0.45 −0.44 −0.31 −0.48 −0.54 −0.58 氨氮 0.50 0.38 0.61 0.41 0.45 0.51 0.48 叶绿素 0.87 0.83 0.88 0.60 0.86 0.86 0.87 表 5 黄河口海水中各重金属平均分配系数
Table 5. Coefficient of average distribution of heavy metals in the seawater of the Yellow River Estuary
Fe Pb Cu Zn Cd Cr As 夏季表层 0.882 0.047 0.027 0.025 0.006 0.024 0.015 夏季底层 1.472 0.039 0.020 0.022 0.005 0.025 0.012 秋季表层 0.403 0.015 0.007 0.013 0.002 0.017 0.002 -
[1] POURABADEHEI M, MULLIGAN C N. Effect of the resuspension technique on distribution of the heavy metals in sediment and suspended particulate matter [J]. Chemosphere, 2016, 153: 58-67. [2] WANG L, LONG X X, CHONG Y X, et al. Potential risk assessment of heavy metals in sediments during the denitrification process enhanced by calcium nitrate addition: Effect of AVS residual [J]. Ecological Engineering, 2016, 87: 333-339. [3] KIM J J, KIM Y S, KUMAR V. Heavy metal toxicity: An update of chelating therapeutic strategies [J]. Journal of Trace Elements in Medicine and Biology, 2019, 54: 226-231. [4] LAO Q B, SU Q Z, LIU G Q, et al. Spatial distribution of and historical changes in heavy metals in the surface seawater and sediments of the Beibu Gulf, China [J]. Marine Pollution Bulletin, 2019, 146: 427-434. [5] VARDHAN K H, KUMAR P S, PANDA R C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives [J]. Journal of Molecular Liquids, 2019, 290: 111197. [6] State Oceanic Administration of China. China Marine Environment Quality Bulletin [R]. 2011. [7] State Oceanic Administration of China. China Marine Environment Quality Bulletin [R]. 2013. [8] YU L S. The Huanghe (Yellow) River: A review of its development, characteristics, and future management issues [J]. Continental Shelf Research, 2002, 22(3): 389-403. [9] NIE M, XIAN N X, FU X H, et al. The interactive effects of petroleum-hydrocarbon spillage and plant rhizosphere on concentrations and distribution of heavy metals in sediments in the Yellow River Delta, China [J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 156-161. [10] LIU C, et al. All around the Bohai Gulf Estuary potential ecological risk assessment [J]. Environ Sci Res, 2002, 121: 33-37. [11] WANG X Y, ZHAO L L, XU H Z, et al. Spatial and seasonal characteristics of dissolved heavy metals in the surface seawater of the Yellow River Estuary, China [J]. Marine Pollution Bulletin, 2018, 137: 465-473. [12] WANG Y, LING M, LIU R, et al. Distribution and source identification of trace metals in the sediment of Yellow River Estuary and the adjacent Laizhou Bay [J]. Physics and Chemistry of the Earth, 2017, 97: 62-70. [13] KUMAR S B, PADHI R K, MOHANTY A K, et al. Distribution and ecological- and health-risk assessment of heavy metals in the seawater of the southeast coast of India [J]. Marine Pollution Bulletin, 2020, 161: 111712. [14] AN Q, WU Y Q, WANG J H, et al. Assessment of dissolved heavy metal in the Yangtze River Estuary and its adjacent sea, China [J]. Environmental Monitoring and Assessment, 2010, 164(1/2/3/4): 173-187. [15] LIU R, JIANG W W, LI F J, et al. Occurrence, partition, and risk of seven heavy metals in sediments, seawater, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China [J]. Journal of Environmental Management, 2021, 279: 111771. [16] ZHANG D W, ZHANG X, TIAN L, et al. Seasonal and spatial dynamics of trace elements in water and sediment from Pearl River Estuary, South China [J]. Environmental Earth Sciences, 2013, 68(4): 1053-1063. [17] ZHANG A G, WANG L L, ZHAO S L, et al. Heavy metals in seawater and sediments from the northern Liaodong Bay of China: Levels, distribution and potential risks [J]. Regional Studies in Marine Science, 2017, 11: 32-42. [18] 刘汝海, 吴晓燕, 秦洁, 等. 黄河口河海混合过程水中重金属的变化特征 [J]. 中国海洋大学学报(自然科学版), 2008, 38(1): 157-162. doi: 10.16441/j.cnki.hdxb.2008.01.028 LIU R H, WU X Y, QIN J, et al. The variation characters of heavy metal content in Huanghe Estuary water [J]. Periodical of Ocean University of China, 2008, 38(1): 157-162(in Chinese). doi: 10.16441/j.cnki.hdxb.2008.01.028
[19] BURGOS-NÚÑEZ S, NAVARRO-FRÓMETA A, MARRUGO-NEGRETE J, et al. Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem [J]. Marine Pollution Bulletin, 2017, 120(1/2): 379-386. [20] HAYNES D, JOHNSON J E. Organochlorine, heavy metal and polyaromatic hydrocarbon pollutant concentrations in the great barrier reef (Australia) environment: A review [J]. Marine Pollution Bulletin, 2000, 41(7/8/9/10/11/12): 267-278. [21] NACKE H, GONÇALVES A C Jr, SCHWANTES D, et al. Availability of heavy metals (Cd, Pb, And Cr) in agriculture from commercial fertilizers [J]. Archives of Environmental Contamination and Toxicology, 2013, 64(4): 537-544. [22] WANG Z L, LIU C Q. Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, Eastern China [J]. Chemical Geology, 2003, 202(3/4): 383-396. [23] KOSHIKAWA M K, TAKAMATSU T, TAKADA J, et al. Distributions of dissolved and particulate elements in the Yangtze Estuary in 1997-2002: Background data before the closure of the Three Gorges Dam [J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 26-36. [24] BENOIT G, OKTAY-MARSHALL S D, CANTU A II, et al. Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries [J]. Marine Chemistry, 1994, 45(4): 307-336.