-
三氯生(5-氯-2-(2,4-二氯苯氧基)苯酚)常在药品和个人护理产品(肥皂、除臭剂和牙膏)中用作防腐剂和抗菌剂,在生产及使用过程中,通过各种途径排放到水体环境[1,2]. 其在各国污水处理厂的进口和出口中均有检出[3],Zheng等[4]对中国郑州4个污水厂的监测发现TCS的进水和出水浓度分别为(322.5 ± 22.3) – (467.2 ± 39.4) ng∙L−1和(5.0 ± 4.2) – (11.3 ± 6.4) ng∙L−1. TCS不仅影响陆地和水生生物生长,且可作为内分泌干扰物导致免疫功能障碍[4,5].
基于硫酸根自由基(SO4·−)和羟基自由基(∙OH)的高级氧化技术(AOPs)是水处理中有机污染物的有效去除方法之一[6]. SO4·−比∙OH具有更强的选择性,因此基于SO4·−的AOPs在水处理中得到了广泛的关注[7]. Wang等[8]用污泥衍生生物炭活化过一硫酸盐降解废水中TCS,实验发现脱氯和羟基化是TCS降解的主要途径. 李青松等[9]利用紫外光激活过硫酸钠去除水中TCS,并通过竞争动力学计算自由基与TCS的二级反应速率常数. 目前大多数此类研究偏重于宏观,对SO4·−诱导TCS转化的微观反应动力学和机制较少涉及.
本文以三氯生为研究对象,采用266 nm激光闪光光解技术研究了三氯生与SO4·−反应中出现的中间产物和这些瞬态物种的生长与衰减规律,结合GC-MS对转化产物进行分析,探讨了SO4·−诱导TCS氧化过程中的转化途径,以便对被研究对象之间的交叉反应的微观反应过程有较完整的认识,从而更加深刻地了解其降解机理中的关键环节,并且可为AOPs技术在实际废污水处理中的应用提供理论参考.
水体中三氯生与硫酸根自由基的反应动力学和机理
Reaction kinetics and mechanism of triclosan with sulfate radical in aqueous solution
-
摘要: 利用266 nm激光闪光光解瞬态吸收光谱技术探讨了水体中三氯生(TCS)与硫酸根自由基(SO4·−)的光化学反应机制,考察了其反应瞬态物种的生长和衰减动力学,并利用气相色谱质谱联用(GC-MS)技术分析了稳态光解产物. 结果表明,SO4·−与TCS反应的总速率常速为 (3.39 ± 0.22) × 109 L∙mol−1∙s−1,其主要途径是SO4·−亲电加成攻击TCS的芳环形成TCS-SO4·− 加合物(TCS-SO4·− adduct),二级反应速率常数为 (2.71 ± 0.24) × 109 L∙mol−1∙s−1. 并且TCS-SO4·− adduct可与溶解氧发生反应,二级速率常数为 (1.40 ± 0.14) × 108 L∙mol−1∙s−1. TCS与SO4·−的转化产物主要有2-(2, 4-二氯苯氧基)苯酚和2-氯-5(2, 4-二氯-3, 5, 6-三羟基苯氧基)-1, 4-苯醌等. 从产物分析可知,TCS与SO4·−的反应途径主要有两种,一种是SO4·−直接攻击TCS上的氯取代基并且脱氯成分子量更小的苯酚. 另一种是SO4·−通过亲电加成生成TCS-SO4·− adduct,接着生成相应的酚和醌,最后被SO4·−氧化生成羟基化产物.Abstract: The photochemical reaction mechanism of triclosan (TCS) and sulfate radical (SO4·−) in water was studied by using 266 nm laser flash photolysis transient absorption spectroscopy techniques. Its growth and decay kinetics of the reaction transient species were systematically investigated. The reaction products were analyzed by gas chromatography mass spectrometry (GC-MS). The results revealed that the overall reaction rate constant of SO4·− with TCS was (3.39 ± 0.22) × 109 L∙mol−1∙s−1, while the main pathway was SO4·− attacked the aromatic ring of TCS through electrophilic addition and formed TCS-SO4·− adduct, the second-order reaction rate constant was (2.71 ± 0.24) × 109 L∙mol−1∙s−1. In addition, TCS-SO4·− adduct could react with dissolved oxygen, and the second-order rate constant was (1.40 ± 0.14) × 108 L∙mol−1∙s−1. The transformation products of TCS and SO4·− mainly included 2- (2, 4-dichlorophenoxy) phenol and 2-chloro-5 (2, 4-dichloro-3, 5, 6-trihydroxy-phenoxy)-1, 4-benzoquinone, etc. From the analysis of products, there were two main reaction pathways between TCS and SO4·−. One was that SO4·− directly attacked the chlorines in TCS to generate phenols with smaller molecular weight via dechlorination. The other option was SO4·− created TCS-SO4·− adduct through electrophilic addition, then generated corresponding phenol and quinone, which were finally oxidized by SO4·− to generate hydroxylated products.
-
Key words:
- triclosan /
- sulfate radical (SO4·−) /
- laser flash photolysis /
- reaction kinetics
-
图 2 (a) K2S2O8和TCS混合溶液的瞬态吸收光谱, (b) 混合溶液在添加不同猝灭剂时的瞬态吸收光谱, (c) 310 nm处瞬态物质的生成曲线, 插图: 310 nm处瞬态物质的准一级生成速率与TCS浓度的线性关系, (d) 450 nm处SO4•−的衰减曲线, 插图: 450 nm处SO4•−的准一级衰减速率与TCS浓度的线性关系.
Figure 2. (a) Transient absorption spectra of mixed K2S2O8 and TCS solutions, (b) Transient absorption spectra of mixed solutions with different quenchers, (c) Growth curve of the transient species at 310 nm, Inset: Plot of the pseudo-first-order formation rate of transient species at 310 nm against TCS concentrations, (d) Decay curve of SO4•− at 450 nm, Inset: Plot of the pseudo-first-order decay rate of SO4•− at 450 nm against TCS concentrations.
-
[1] 高海萍, 周雪飞, 张亚雷, 等. 三氯生对水生生物的毒性效应研究进展 [J]. 环境化学, 2012, 31(8): 1145-1150. GAO H P, ZHOU X F, ZHANG Y L, et al. The toxic effect of triclosan on the aquatic organisms [J]. Environmental Chemistry, 2012, 31(8): 1145-1150(in Chinese).
[2] YUEH M F, HE F, CHEN C, et al. Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease [J]. PNAS, 2020, 117(49): 31259-31266. [3] YANG Y, OK Y S, KIM K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review [J]. Science of the Total Environment, 2017, 596/597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102 [4] ZHENG G D, YU B, WANG Y W, et al. Removal of triclosan during wastewater treatment process and sewage sludge composting—A case study in the middle reaches of the Yellow River [J]. Environment International, 2020, 134: 105300. doi: 10.1016/j.envint.2019.105300 [5] CHEN J, HARTMANN E M, KLINE J, et al. Assessment of human exposure to triclocarban, triclosan and five parabens in US indoor dust using dispersive solid phase extraction followed by liquid chromatography tandem mass spectrometry [J]. Journal of Hazardous Materials, 2018, 360: 623-630. doi: 10.1016/j.jhazmat.2018.08.014 [6] CHEN C Y, WU Z H, ZHENG S S, et al. Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite [J]. Environmental Science & Technology, 2020, 54(13): 8455-8463. [7] YANG Y, LU X L, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate [J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054 [8] WANG S Z, WANG J L. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater [J]. Chemical Engineering Journal, 2019, 356: 350-358. doi: 10.1016/j.cej.2018.09.062 [9] 李青松, 李学艳, 姚宁波, 等. UV/SPS降解水中三氯生的效能及动力学 [J]. 环境科学, 2017, 38(4): 1467-1476. doi: 10.13227/j.hjkx.201609211 LI Q S, LI X Y, YAO N B, et al. Efficiency and kinetics of triclosan degradation in aqueous solution by UV/sodium persulfate [J]. Environmental Science, 2017, 38(4): 1467-1476(in Chinese). doi: 10.13227/j.hjkx.201609211
[10] MA J Z, ZHU C Z, LU J, et al. Photodissociation of peroxynitric acid (HO2NO2) aqueous solution at 266 nm [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 342: 35-41. doi: 10.1016/j.jphotochem.2017.03.033 [11] 雷宇, 陆军, 马建中, 等. 355 nm光照下液相中甲苯与亚硝酸的交叉反应 [J]. 环境化学, 2017, 36(8): 1693-1699. doi: 10.7524/j.issn.0254-6108.2016113003 LEI Y, LU J, MA J Z, et al. Cross reaction of toluene with nitrous acid in aqueous phase initiated by irradiation of 355 nm UV light [J]. Environmental Chemistry, 2017, 36(8): 1693-1699(in Chinese). doi: 10.7524/j.issn.0254-6108.2016113003
[12] WANG D G, SCHUCHMANN H P, von SONNTAG C. Phenylalanine: its ·OH and SO4·−-induced oxidation and decarboxylation. A pulse radiolysis and product analysis study [J]. Zeitschrift Für Naturforschung B, 1993, 48(6): 761-770. [13] SCHUCHMANN H P, DEEBLE D J, OLBRICH G, et al. The SO4•−-induced chain reaction of 1, 3-dimethyluracil with peroxodisulphate [J]. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1987, 51(3): 441-453. [14] KHATAEE A R, MIRZAJANI O. UV/peroxydisulfate oxidation of C. I. Basic Blue 3: Modeling of key factors by artificial neural network [J]. Desalination, 2010, 251(1/2/3): 64-69. [15] GAO H P, CHEN J B, ZHANG Y L, et al. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system [J]. Chemical Engineering Journal, 2016, 306: 522-530. [16] YUAN R X, WANG Z H, HU Y, et al. Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification [J]. Chemosphere, 2014, 109: 106-112. doi: 10.1016/j.chemosphere.2014.03.007 [17] MERGA G, RAO B S M, MOHAN H, et al. Reactions of ∙OH and SO4•− with some halobenzenes and halotoluenes: A radiation chemical study [J]. The Journal of Physical Chemistry, 1994, 98(37): 9158-9164. [18] NETA P, MADHAVAN V, ZEMEL H, et al. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds [J]. Journal of the American Chemical Society, 1977, 99(1): 163-164. doi: 10.1021/ja00443a030 [19] XIAO R Y, YE T T, WEI Z S, et al. Quantitative structure: Activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical [J]. Environmental Science & Technology, 2015, 49(22): 13394-13402. [20] LUO S, WEI Z S, DIONYSIOU D D, et al. Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway [J]. Chemical Engineering Journal, 2017, 327: 1056-1065. [21] NAKANISHI I, FUKUHARA K, SHIMADA T, et al. Effects of magnesium ion on kinetic stability and spin distribution of phenoxyl radical derived from a vitamin E analogue: Mechanistic insight into antioxidative hydrogen transfer reaction of vitamin E [J]. Journal of the Chemical Society Perkin Transactions, 2002(9): 1520-1524. [22] ANDERSON R F, BRIMBLE M A, NAIRN M R, et al. Reactions of semiquinones in aqueous solution. A comparison of the one electron reduction of kalafungin and analogues with other semiquinones using pulse radiolysis [J]. Journal of the Chemical Society, Perkin Transactions 2, 1999(3): 475-480. [23] LUCARINI M, PEDULLI G F, CIPOLLONE M. Bond dissociation enthalpy of. alpha.-tocopherol and other phenolic antioxidants [J]. The Journal of Organic Chemistry, 1994, 59(17): 5063-5070. [24] PLIMMER J R, KLINGEBIEL U I. Riboflavin photosensitized oxidation of 2, 4-dichlorophenol: Assessment of possible chlorinated dioxin formation [J]. Science, 1971, 174(4007): 407-408. [25] ZHU Y C, ZHU M Y, XIE J J, et al. Photochemical reaction kinetics and mechanism of bisphenol A with K2S2O8 in aqueous solution: A laser flash photolysis study [J]. Canadian Journal of Chemistry, 2021, 99(1): 43-50. [26] ZHOU P, ZHANG J, ZHANG Y L, et al. Degradation of 2, 4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper [J]. Journal of Hazardous Materials, 2018, 344: 1209-1219. [27] 蒋梦迪, 张清越, 季跃飞, 等. 热活化过硫酸盐降解三氯生 [J]. 环境科学, 2018, 39(4): 1661-1667. doi: 10.13227/j.hjkx.201707201 JIANG M D, ZHANG Q Y, JI Y F, et al. Degradation of triclosan by heat activated persulfate oxidation [J]. Environmental Science, 2018, 39(4): 1661-1667(in Chinese). doi: 10.13227/j.hjkx.201707201