-
天然有机质(NOM)是由动植物残体通过生物或非微生物质转化形成的复杂有机分子混合物,通常由多糖、蛋白质、腐殖质和小分子物质组成,广泛存在于陆地和水生系统中[1]。环境水体有机碳浓度通常在1—8 mg·L−1 [2],部分水体中有机碳浓度可高于10 mg·L−1[3]。NOM是有机污染物在土壤和水环境中的重要赋存相,显著影响有机污染物的分配、传输和生物有效性。有机污染物在NOM上吸附的有机碳-水分配系数(KOC)是污染物迁移积累模型的核心参数。如何准确、快速地评估有机污染物在NOM上的吸附行为是环境科学研究的一个重要科学问题。
解决上述问题主要涉及有机污染物和NOM性质定量描述、有机污染物-NOM作用机制解析和吸附预测模型构建三个环节。其中,有机污染物-NOM作用机制解析是目前研究的核心。作用机制研究的重要性体现在两个方面:首先,通过对吸附主控机制的解析来选择参与建模的有机污染物和NOM关键性质参数;其次,揭示上述性质参数与吸附行为之间的关系(通常为线性关系)。机制研究驱动的吸附模型主要包括单参数线性自由能模型、多参数线性自由能模型和两相体系模型。其特点是形式简洁、可解释性强。有机污染物和NOM性质定量描述研究为吸附预测模型提供了建模的参数。其中,疏水性是控制有机污染物-NOM作用的关键性质参数[4]。有机污染物的疏水性通常用正辛醇-水分配系数(KOW)进行量化。NOM疏水性的定量方法则较为多样,主要包括树脂分馏法、元素分析法、核磁共振波谱法、反相高效液相色谱法、光谱法和双水相体系法。
本文系统评估了上述NOM疏水性定量方法和NOM吸附预测模型,通过对现有方法和模型的优缺点和适用范围进行系统分析,揭示该领域研究的不足,展望未来的研究方向,为NOM性质定量描述方法和吸附预测模型研究提供参考。
天然有机质疏水性定量方法及吸附预测模型
The hydrophobicity quantification methods and sorption models for natural organic matter
-
摘要: 天然有机质是有机污染物在土壤和水环境中的重要赋存相,显著影响有机污染物的传输、归趋和生物有效性。有机污染物的有机碳-水分配系数是污染物迁移积累模型的核心参数。如何准确、快速地评估有机污染物在天然有机质上的吸附行为是环境科学研究的一个重要科学问题。该方向的研究内容主要包括有机污染物和天然有机质性质定量描述、有机污染物-天然有机质作用机制解析和吸附预测模型构建三个环节。学界在有机污染物-天然有机质作用机制解析方向取得了丰硕的成果,在天然有机质性质定量描述和吸附预测模型构建方向仍有广阔的发展空间。本文系统评估了现有的天然有机质疏水性定量方法和天然有机质吸附预测模型。通过对方法和模型优缺点和适用范围的系统分析,揭示了现有研究的不足,展望了未来研究的主要方向。Abstract: Natural organic matter (NOM) is one of the major partition phases of organic pollutants in the environment. The partition of organic pollutants to NOM is a key process controlling its environmental fate, transport and bioavailability. The organic carbon normalized sorption coefficient (KOC) is one of key parameters in the fate and transport model of organic pollutants. Accurate and efficient prediction of the sorption behavior of organic pollutants to NOM is one of the major challenges in the environmental science field. The solution includes the quantitative description of organic pollutants and NOM, the sorption mechanisms, and the prediction models. Currently, significant progresses have been made in revealing the sorption mechanisms. There are great needs for studies regarding the quantitative description of organic pollutants and NOM as well as the prediction models. In this review, we compared current methodologies for scaling NOM hydrophobicity and the current models for prediction of organic compound sorption to NOM. By systematic analysis of the advantages and limitations of current methods and models, we proposed future research needs for further advancing the prediction of organic pollutant sorption behavior.
-
Key words:
- natural organic matter /
- organic pollutants /
- sorption /
- hydrophobicity /
- prediction model
-
图 2 单参数线性自由能模型(sp-LFER)(a)和多参数线性自由能模型(pp-LFER)(b)对11种非极性有机化合物在天然有机质(底泥溶解性有机质,水体溶解性有机质,藻源有机质)上吸附的预测(数据源于参考文献[35-37])
Figure 2. The prediction of 11 apolar organic compound sorption to different NOM samples (sediment NOM, aquatic NOM and algal NOM) made by sp-LFER and pp-LFER models (The data was adopted from reference [35-37])
图 3 非极性有机污染物在天然有机质上吸附的lg KOC实测值与(a)两相体系模型、(b)sp-LFER和(c、d)pp-LFER模型(公式13-16)预测值的比较(数据来源于参考文献[36-37])
Figure 3. Comparison between experimental lg KOC and predictions made by the two-phase system model, sp-LFER and pp-LFER models (equations 13-16) for apolar organic compound sorption to NOM samples (The data was adopted from reference [36- 37])
表 1 天然有机质疏水性定量方法综合评估
Table 1. Evaluation of quantification methods for NOM hydrophobicity
方法
Methods准确性
Accuracy成本
Cost速度
Speed树脂分馏法 4 3 4 元素分析法 5 3 3 核磁共振波谱法 5 2 3 反相高效液相色谱法 3 3 4 光谱法 3 5 5 双水相分配系数 4 4.5 4.5 表 2 天然有机质吸附有机污染物行为预测模型比较
Table 2. Comparison of prediction models for NOM sorption of organic pollutants
吸附模型
Prediction models优点
Advantages缺点
Limitations两相体系模型 同时考虑NOM和有机污染物的性质;
参数简单易得;预测准确性较好疏水分配主控;适用范围有限 单参数线性自由能模型 参数简单易得 疏水分配主控;未考虑NOM的性质;预测准确性较差;适用范围有限 多参数线性自由能模型 考虑NOM和有机污染物间的复杂相互作用;
预测准确性较好;适用范围广泛未考虑NOM的性质;新型化合物分子结构参数获取成本较高 -
[1] YANG H K, XUE W, LIU M J, et al. Carbon doped Fe3O4 peroxidase-like nanozyme for mitigating the membrane fouling by NOM at neutral pH [J]. Water Research, 2020, 174: 115637. doi: 10.1016/j.watres.2020.115637 [2] KILDUFF J E, MATTARAJ S, ZHOU M Y, et al. Kinetics of membrane flux decline: The role of natural colloids and mitigation via membrane surface modification [J]. Journal of Nanoparticle Research, 2005, 7(4/5): 525-544. [3] CUI H, WANG J X, LIU T, et al. Spatial and seasonal patterns of dissolved organic matter hydrophobicity in Lake Taihu revealed by the aqueous two-phase system [J]. Science of the Total Environment, 2021, 776: 145892. doi: 10.1016/j.scitotenv.2021.145892 [4] CHIOU C T, PETERS L J, FREED V H. A physical concept of soil-water equilibria for nonionic organic compounds [J]. Science, 1979, 206(4420): 831-832. doi: 10.1126/science.206.4420.831 [5] KNULST J C, BOERSCHKE R C, LOEMO S. Differences in organic surface microlayers from an artificially acidified and control lake, elucidated by XAD-8/XAD-4 tandem separation and solid state 13C NMR spectroscopy [J]. Environmental Science & Technology, 1998, 32(1): 8-12. [6] CROUÉ J P, BENEDETTI M F, VIOLLEAU D, et al. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site [J]. Environmental Science & Technology, 2003, 37(2): 328-336. [7] MOPPER K, STUBBINS A, RITCHIE J D, et al. Advanced instrumental approaches for characterization of marine dissolved organic matter: Extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy [J]. Chemical Reviews, 2007, 107(2): 419-442. doi: 10.1021/cr050359b [8] PEURAVUORI J. Binding of Pyrene on lake aquatic humic matter: The role of structural descriptors [J]. Analytica Chimica Acta, 2001, 429(1): 75-89. doi: 10.1016/S0003-2670(00)01259-9 [9] NAMJESNIK-DEJANOVIC K, CABANISS S E. Reverse-phase HPLC method for measuring polarity distributions of natural organic matter [J]. Environmental Science & Technology, 2004, 38(4): 1108-1114. [10] WU F C, EVANS R D, DILLON P J. Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection [J]. Environmental Science & Technology, 2003, 37(16): 3687-3693. [11] STENSON A C. Reversed-phase chromatography fractionation tailored to mass spectral characterization of humic substances [J]. Environmental Science & Technology, 2008, 42(6): 2060-2065. [12] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. [13] CHIN Y P, AIKEN G R, DANIELSEN K M. Binding of Pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity [J]. Environmental Science & Technology, 1997, 31(6): 1630-1635. [14] HUR J, SCHLAUTMAN M A. Using selected operational descriptors to examine the heterogeneity within a bulk humic substance [J]. Environmental Science & Technology, 2003, 37(5): 880-887. [15] FU H Y, LIU K, ALVAREZ P J J, et al. Quantifying hydrophobicity of natural organic matter using partition coefficients in aqueous two-phase systems [J]. Chemosphere, 2019, 218: 922-929. doi: 10.1016/j.chemosphere.2018.11.183 [16] FREIRE M G, CLÁUDIO A F M, ARAÚJO J M M, et al. Aqueous biphasic systems: A boost brought about by using ionic liquids [J]. Chemical Society Reviews, 2012, 41(14): 4966-4995. doi: 10.1039/c2cs35151j [17] ASENJO J A, ANDREWS B A. Aqueous two-phase systems for protein separation: A perspective [J]. Journal of Chromatography A, 2011, 1218(49): 8826-8835. doi: 10.1016/j.chroma.2011.06.051 [18] HATTI-KAUL R. Aqueous two-phase systems. A general overview [J]. Molecular Biotechnology, 2001, 19(3): 269-277. doi: 10.1385/MB:19:3:269 [19] IQBAL M, TAO Y F, XIE S Y, et al. Aqueous two-phase system (ATPS): An overview and advances in its applications [J]. Biological Procedures Online, 2016, 18: 18. doi: 10.1186/s12575-016-0048-8 [20] ANDREWS B A, ASENJO J A. Theoretical and experimental evaluation of hydrophobicity of proteins to predict their partitioning behavior in aqueous two phase systems: A review [J]. Separation Science and Technology, 2010, 45(15): 2165-2170. doi: 10.1080/01496395.2010.507436 [21] ANDREWS B A, SCHMIDT A S, ASENJO J A. Correlation for the partition behavior of proteins in aqueous two-phase systems: Effect of surface hydrophobicity and charge [J]. Biotechnology and Bioengineering, 2005, 90(3): 380-390. doi: 10.1002/bit.20495 [22] FRANCO T T, ANDREWS A T, ASENJO J A. Use of chemically modified proteins to study the effect of a single protein property on partitioning in aqueous two-phase systems: Effect of surface charge [J]. Biotechnology and Bioengineering, 1996, 49(3): 309-315. doi: 10.1002/(SICI)1097-0290(19960205)49:3<309::AID-BIT9>3.0.CO;2-O [23] HACHEM F, ANDREWS B A, ASENJO J A. Hydrophobic partitioning of proteins in aqueous two-phase systems [J]. Enzyme and Microbial Technology, 1996, 19(7): 507-517. doi: 10.1016/S0141-0229(96)80002-D [24] ABRAHAM M H, POOLE C F, POOLE S K. Classification of stationary phases and other materials by gas chromatography [J]. Journal of Chromatography A, 1999, 842(1/2): 79-114. [25] ABRAHAM M H. Hydrogen bonding. 31. Construction of a scale of solute effective or summation hydrogen-bond basicity [J]. Journal of Physical Organic Chemistry, 1993, 6(12): 660-684. doi: 10.1002/poc.610061204 [26] ABRAHAM M H, DOHERTY R M, KAMLET M J, et al. Linear solvation energy relationships. Part 37. An analysis of contributions of dipolarity–polarisability, nucleophilic assistance, electrophilic assistance, and cavity terms to solvent effects on t-butyl halide solvolysis rates [J]. J Chem Soc, Perkin Trans 2, 1987(7): 913-920. [27] GOSS K U, SCHWARZENBACH R P. Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds [J]. Environmental Science & Technology, 2001, 35(1): 1-9. [28] ENDO S, GOSS K U. Applications of polyparameter linear free energy relationships in environmental chemistry [J]. Environmental Science & Technology, 2014, 48(21): 12477-12491. [29] ULRICH N; ENDO S; BROWN T N, et al. UFZ-LSER Database, v 3.2 [Internet]. 2017. [30] NGUYEN T H, GOSS K U, BALL W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments [J]. Environmental Science & Technology, 2005, 39(4): 913-924. [31] BRONNER G, GOSS K U. Predicting sorption of pesticides and other multifunctional organic chemicals to soil organic carbon [J]. Environmental Science & Technology, 2011, 45(4): 1313-1319. [32] NEALE P A, ESCHER B I, GOSS K U, et al. Evaluating dissolved organic carbon-water partitioning using polyparameter linear free energy relationships: Implications for the fate of disinfection by-products [J]. Water Research, 2012, 46(11): 3637-3645. doi: 10.1016/j.watres.2012.04.005 [33] ENDO S, GRATHWOHL P, HADERLEIN S B, et al. LFERs for soil organic carbon–water distribution coefficients (KOC) at environmentally relevant sorbate concentrations [J]. Environmental Science & Technology, 2009, 43(9): 3094-3100. [34] SCHWARZENBACH R P, GSCHWEND P M, IMBODEN D M. Environmental organic chemistry[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 2002. [35] LIU K, FU H Y, ZHU D Q, et al. Prediction of apolar compound sorption to aquatic natural organic matter accounting for natural organic matter hydrophobicity using aqueous two-phase systems [J]. Environmental Science & Technology, 2019, 53(14): 8127-8135. [36] LIU K, KONG L R, WANG J X, et al. Two-phase system model to assess hydrophobic organic compound sorption to dissolved organic matter [J]. Environmental Science & Technology, 2020, 54(19): 12173-12180. [37] WEI P Y, FU H Y, XU Z Y, et al. Prediction of hydrophobic organic compound partition to algal organic matter through the growth cycle of Microcystis aeruginosa [J]. Environmental Pollution, 2021, 289: 117827. doi: 10.1016/j.envpol.2021.117827 [38] SUMMERS R S, CORNEL P K, ROBERTS P V. Molecular size distribution and spectroscopic characterization of humic substances [J]. Science of the Total Environment, 1987, 62: 27-37. doi: 10.1016/0048-9697(87)90478-5 [39] HELMS J R, MAO J D, STUBBINS A, et al. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching [J]. Aquatic Sciences, 2014, 76(3): 353-373. doi: 10.1007/s00027-014-0340-0 [40] POOLE S K, POOLE C F. Chromatographic models for the sorption of neutral organic compounds by soil from water and air [J]. Journal of Chromatography A, 1999, 845(1/2): 381-400. [41] CORNELISSEN G, GUSTAFSSON O, BUCHELI T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation [J]. Environmental Science & Technology, 2005, 39(18): 6881-6895. [42] XING B S, PIGNATELLO J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter [J]. Environmental Science & Technology, 1997, 31(3): 792-799. [43] RAN Y, HUANG W L, RAO P S C, et al. The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments [J]. Journal of Environmental Quality, 2002, 31(6): 1953-1962. doi: 10.2134/jeq2002.1953 [44] PAN B, GHOSH S, XING B S. Nonideal binding between dissolved humic acids and polyaromatic hydrocarbons [J]. Environmental Science & Technology, 2007, 41(18): 6472-6478.