-
汞(Hg)是一种天然存在的有毒持久性污染物,是环境中毒性最强的重金属元素之一[1]。甲基汞(MeHg)是一种毒性极强的有机汞化合物[2],可通过食物链生物放大效应在高营养级生物体中高度富集[3]。MeHg进入人体会对人的中枢神经系统产生极大危害,导致中枢神经系统发育障碍,还可引起神经衰弱、精神障碍等神经精神症状[4]。人类暴露MeHg的主要途径之一是食用水产品[5]。由于MeHg在鱼类等水产品中富集造成了严重的人体暴露风险,汞已经被各国列为优先控制污染物,汞污染已经成为全球最重要环境问题之一[6]。
自20世纪80年代以来,渔业资源的匮乏使得全球水产养殖业迅速发展。高密度网箱养殖模式向水中投放的大量饵料只有25%—35%被鱼类摄食,其余部分残留在水体中[7]。饵料中富含氮、磷等营养盐随水溶出进入水体[8],是造成水体富营养化加重,进而导致藻华发生的重要原因之一。在水生生态系统,藻类死亡后大量残体沉积进入水底,导致沉积物中有机质大量积累,进一步诱导水质恶化,污染物形态也随之发生改变[9],对水生生态系统环境质量造成显著影响。
溶解性有机物(dissolved organic matter, DOM)是多种化学成分组成、结构复杂且具有较宽分子量分布的有机化合物复杂混合体[10],其中包括蛋白质、氨基酸、糖类、木质素、脂类和腐殖酸等化合物[11],主要来源于生物分泌物和动植物残体碎屑[12]。DOM广泛分布于河流、湖泊、海洋等水环境中,是水生生态系统中最活跃的有机质组分。由于其含有大量官能团,可以与水体中重金属络合形成配合物[13],从而影响水体中痕量金属离子物理迁移、化学转化以及生物可利用性等[14]。
由于DOM组成复杂,目前关于DOM对无机汞(IHg)甲基化影响观点并不统一。已有研究表明,DOM对汞甲基化的影响具有双重效应,一方面能促进汞甲基化过程—这是因为DOM能够作为碳/氮来源,为微生物对汞甲基化过程提供丰富的营养物质,增强微生物活性,从而促进IHg向MeHg转化[15]。Gascon等[16-17]研究结果证实了水库、湖泊和海洋水体中MeHg浓度与水体内源DOM浓度相关。在Fellman等[18]研究发现,欧洲溪流中MeHg浓度与内源DOM的含量呈正相关,这说明内源DOM对于水体中MeHg的形成具有非常重要的影响。另一方面,有研究认为DOM对汞甲基化起到抑制作用。DOM是天然水体中最重要的汞络合剂之一。一些研究认为DOM抑制汞甲基化主要是因为与汞离子发生吸附、络合等作用,影响了汞在介质中的迁移转化,降低了其生物有效性,从而影响了MeHg的产生[19]。
藻类残体作为水体中主要的内源有机物,藻华大面积爆发必然引起水体有机质含量和组成性质的变化。大量研究表明,水生态系统中MeHg浓度变化与藻类产生量有密切关系,藻源有机物的存在能够加快水体中IHg向MeHg的转化[1, 20-22]。由于渔业养殖区水体氮、磷等营养盐含量较高,易造成水体富营养化加重和藻华爆发,藻类中DOM进一步影响养殖区水体汞形态变化,进而对人类健康产生危害而目前关于渔业养殖区藻源DOM对汞甲基化研究还鲜有报道。
本研究以渔业养殖区藻类DOM为研究目标,研究藻源DOM在汞甲基化过程中影响,同时结合傅里叶红外光谱与三维荧光光谱技术,剖析藻源DOM组成及结构特征,从微观角度探究藻源DOM影响汞甲基化的作用机制,以期为控制养殖水体中汞甲基化的形成提供理论依据。
渔业养殖区藻源溶解性有机质性质特征对汞甲基化影响
Characteristics of algae dissolved organic matter composition in coastal fishery farming area and its effect on mercury methylation
-
摘要: 溶解性有机质(dissolved organic matter, DOM)是水生生态系统中的重要成分,能够显著影响汞的甲基化等形态变化过程。以近岸渔业养殖区藻源DOM为研究对象,运用傅里叶变换红外光谱和三维荧光光谱技术,对其结构特征进行表征;并选取总有机碳浓度TOCDOM=10 mg·L−1(DOM10)和TOCDOM=50 mg·L−1(DOM50)两种水平藻源DOM提取液,分析其在不同汞浓度条件下对汞甲基化过程的影响。结果表明,藻源DOM主要由类蛋白和类腐殖质组分组成,其中前者含量较高,疏水及芳香组分含量较低;红外光谱显示藻源DOM中含有—OH、—CH3、—CH2、芳香性C=C等官能团。甲基化实验表明,在溶液中DOM含量相对较少时(DOM∶Hg浓度比≤15625),DOM表现出抑制汞甲基化的趋势,而当溶液中 DOM 含量逐渐升高(DOM∶Hg浓度比>15625),DOM可以显著促进水体中汞向甲基汞的转化。藻源DOM既能作为碳氮来源提高微生物活性,为汞的甲基化提供甲基供体,又可以与溶液中Hg2+发生络合,从而影响汞甲基化过程。在汞溶液浓度相对较低时,DOM对汞甲基化过程的影响主要表现为提供大量的甲基供体,同时作为微生物利用的底物,促进无机汞向甲基汞的转化,甲基汞转化率最高可达0.257%;但在高汞浓度条件下,DOM对汞的络合作用降低了无机汞的微生物可利用性,水体中甲基汞下降,表现出抑制作用。Abstract: Dissolved organic matter (DOM) is an essential component in aquatic ecosystems, significantly affecting mercury speciation changes such as the methylation process. In this study, DOM was leached from algae in the coastal fishery culture area. Fourier transform infrared spectroscopy and three-dimensional (3D) excitation-emission matrix (EEM) fluorescence spectroscopy were used to explore the composition and characteristics of algal DOM. The effect of DOM on the mercury methylation process was investigated using two DOM concentrations (according total organic carbon, TOCDOM=10 mg·L−1 and TOCDOM=50 mg·L−1 denoted as DOM10 and DOM50, respectively) and different mercury concentrations. The result shows that the algal DOM is mainly composed of protein-like and humic-like components which the former is higher. DOM has less aromaticity and hydrophobicity. The algal DOM contains —OH groups, —CH3 and —CH2 groups, C=C in aromatic structure, and other functional groups. DOM can inhibit mercury methylation in a lower content (DOM : Hg≤15625) while it significantly promote the conversion of mercury to methylmercury in solution as the content gradually increases (DOM : Hg>15625).It could promote mercury methylation by providing methyl donors or as the resource of C and N to improve microbial activity. In contrast, it can also be complex with Hg2+ during their reaction process and further inhibit mercury methylation. At lower mercury concentrations DOM mainly provides a large amount of methyl donors and as a substrate for microbial to enhance the methylation process, the methylmercury conversion rate is up to 0.257%. However, DOM reduced bioavailability of inorganic mercury at higher mercury concentration and showing an inhibitory effect as for the complexation mechanism.
-
Key words:
- mercury /
- methylation /
- dissolved organic matter /
- algae /
- fisheries and aquaculture
-
表 1 藻源DOM的三维荧光光谱参数与其他物质的比较
Table 1. Comparison of fluorescence spectrum parameters of DOM from algae and other substances
表 2 藻源DOM的紫外吸收光谱参数
Table 2. Comparison of Ultraviolet absorption spectrum parameters of DOM from algae and other substances
-
[1] BRAVO A G, KOTHAWALA D N, ATTERMEYER K, et al. The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe [J]. Water Research, 2018, 144: 172-182. doi: 10.1016/j.watres.2018.06.064 [2] 闫海鱼, 冯彩艳. 水产养殖对水生生态系统中汞甲基化影响研究进展 [J]. 环境化学, 2012, 31(11): 1782-1786. YAN H Y, FENG C Y. Resesrcher necessity and advances about influence on methlylation of mercury in aquatic ecosystem from the aquaculture [J]. Environmental Chemistry, 2012, 31(11): 1782-1786(in Chinese).
[3] MOREL F M M, KRAEPIEL A M L, AMYOT M. The chemical cycle and bioaccumulation of mercury [J]. Annual Review of Ecology and Systematics, 1998, 29(1): 543-566. doi: 10.1146/annurev.ecolsys.29.1.543 [4] 冯新斌, 仇广乐, 付学吾, 等. 环境汞污染[J]. 化学进展, 2009, 21(增刊1): 436-457. FENG X B, QIU G L, FU X W, et al. Mercury pollution in the environment[J]. Progress in Chemistry, 2009, 21(Sup 1): 436-457(in Chinese).
[5] ZHANG H, FENG X B, LARSSEN T, et al. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L. ) grain [J]. Environmental Science & Technology, 2010, 44(12): 4499-4504. [6] 张玉涛, 程劲松, 李琳, 等. 溶解性有机质对水体汞还原反应影响机制研究进展 [J]. 三峡大学学报(自然科学版), 2015, 37(1): 101-104. doi: 10.13393/j.cnki.issn.1672-948X.2015.01.023 ZHANG Y T, CHENG J S, LI L, et al. Progress in research on influences of dissolved organic matter on mercury reduction in water [J]. Journal of China Three Gorges University (Natural Sciences), 2015, 37(1): 101-104(in Chinese). doi: 10.13393/j.cnki.issn.1672-948X.2015.01.023
[7] 程素珍, 许尚杰, 刁汇文. 水库网箱养鱼对水质的影响及防治对策 [J]. 水利与建筑工程学报, 2010, 8(1): 30-31,147. doi: 10.3969/j.issn.1672-1144.2010.01.010 CHENG S Z, XU S J, DIAO H W. Influence of fish culturing with cages in reservoir on water quality and countermeasures to it [J]. Journal of Water Resources and Architectural Engineering, 2010, 8(1): 30-31,147(in Chinese). doi: 10.3969/j.issn.1672-1144.2010.01.010
[8] 王立明, 刘德文. 网箱养鱼对潘家口水库水质的影响分析 [J]. 河北渔业, 2008(6): 42-44,49. doi: 10.3969/j.issn.1004-6755.2008.06.021 WANG L M, LIU D W. Influence of cage culture on water quality in Panjiakou reservoir [J]. Hebei Fisheries, 2008(6): 42-44,49(in Chinese). doi: 10.3969/j.issn.1004-6755.2008.06.021
[9] CHEN M J, CHEN F Z, XING P, et al. Microbial eukaryotic community in response to Microcystis spp. bloom, as assessed by an enclosure experiment in Lake Taihu, China [J]. FEMS Microbiology Ecology, 2010, 74(1): 19-31. doi: 10.1111/j.1574-6941.2010.00923.x [10] AIKEN G R, HSU-KIM H, RYAN J N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids [J]. Environmental Science & Technology, 2011, 45(8): 3196-3201. [11] NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM): A critical review [J]. Analytical and Bioanalytical Chemistry, 2013, 405(1): 109-124. doi: 10.1007/s00216-012-6363-2 [12] WETZEL R G. Death, detritus, and energy flow in aquatic ecosystems [J]. Freshwater Biology, 1995, 33(1): 83-89. doi: 10.1111/j.1365-2427.1995.tb00388.x [13] SCHARTUP A T, NDU U, BALCOM P H, et al. Contrasting effects of marine and terrestrially derived dissolved organic matter on mercury speciation and bioavailability in seawater [J]. Environmental Science & Technology, 2015, 49(10): 5965-5972. [14] DUNNIVANT F M, JARDINE P M, TAYLOR D L, et al. Cotransport of cadmium and hexachlorobiphenyl by dissolved organic carbon through columns containing aquifer material [J]. Environmental Science & Technology, 1992, 26(2): 360-368. [15] HE T R, FENG X B, GUO Y N, et al. Distribution and speciation of mercury in the Hongfeng reservoir, Guizhou Province, China [J]. Chinese Journal of Geochemistry, 2008, 27(1): 97-103. doi: 10.1007/s11631-008-0097-z [16] GASCÓN DÍEZ E, LOIZEAU J L, COSIO C, et al. Role of settling particles on mercury methylation in the oxic water column of freshwater systems [J]. Environmental Science & Technology, 2016, 50(21): 11672-11679. [17] NOH S, KIM J, HUR J, et al. Potential contributions of dissolved organic matter to monomethylmercury distributions in temperate reservoirs as revealed by fluorescence spectroscopy [J]. Environmental Science and Pollution Research, 2018, 25(7): 6474-6486. doi: 10.1007/s11356-017-0913-2 [18] FELLMAN J B, HOOD E, SPENCER R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review [J]. Limnology and Oceanography, 2010, 55(6): 2452-2462. doi: 10.4319/lo.2010.55.6.2452 [19] 陈春羽, 王定勇. 水溶性有机质对土壤及底泥中汞吸附行为的影响 [J]. 环境科学学报, 2009, 29(2): 312-317. doi: 10.3321/j.issn:0253-2468.2009.02.013 CHEN C Y, WANG D Y. Effect of dissolved organic matter on adsorption of mercury by soils and sediment [J]. Acta Scientiae Circumstantiae, 2009, 29(2): 312-317(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.02.013
[20] SOERENSEN A L, SCHARTUP A T, SKROBONJA A, et al. Organic matter drives high interannual variability in methylmercury concentrations in a subarctic coastal sea [J]. Environmental Pollution, 2017, 229: 531-538. doi: 10.1016/j.envpol.2017.06.008 [21] BRAVO A G, BOUCHET S, TOLU J, et al. Molecular composition of organic matter controls methylmercury formation in boreal lakes [J]. Nature Communications, 2017, 8: 14255. doi: 10.1038/ncomms14255 [22] SCHARTUP A T, MASON R P, BALCOM P H, et al. Methylmercury production in estuarine sediments: Role of organic matter [J]. Environmental Science & Technology, 2013, 47(2): 695-700. [23] BARRIUSO E, BAER U, CALVET R. Dissolved organic matter and adsorption-desorption of dimefuron, atrazine, and carbetamide by soils [J]. Journal of Environmental Quality, 1992, 21(3): 359-367. [24] 高洁, 江韬, 李璐璐, 等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征 [J]. 环境科学, 2015, 36(1): 151-162. GAO J, JIANG T, LI L L, et al. Ultraviolet-visible(UV-vis) and fluorescence spectral characteristics of dissolved organic matter(DOM) in soils of water-level fluctuation zones of the Three Gorges reservoir region [J]. Environmental Science, 2015, 36(1): 151-162(in Chinese).
[25] 杨大佐. 刺参养殖池塘有机碳周年变化的初步研究 [J]. 科技致富向导, 2011(20): 108-109. [26] LYU L L, LIU G, SHANG Y X, et al. Characterization of dissolved organic matter (DOM) in an urbanized watershed using spectroscopic analysis [J]. Chemosphere, 2021, 277: 130210. doi: 10.1016/j.chemosphere.2021.130210 [27] 刘金铃, 丁振华. 汞的甲基化研究进展 [J]. 地球与环境, 2007, 35(3): 215-222. LIU J L, DING Z H. Progress in research on mercury methylation in environment [J]. Earth and Environment, 2007, 35(3): 215-222(in Chinese).
[28] MOREAU J W, GIONFRIDDO C M, KRABBENHOFT D P, et al. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3 [J]. Frontiers in Microbiology, 2015, 6: 1389. [29] 蒋红梅, 冯新斌, 梁琏, 等. 蒸馏-乙基化GC-CVAFS法测定天然水体中的甲基汞 [J]. 中国环境科学, 2004, 24(5): 130-135. doi: 10.3321/j.issn:1000-6923.2004.05.014 JIANG H M, FENG X B, LIANG L, et al. Determination of methyl mercury in waters by distillation-GC-CVAFS technique [J]. China Environmental Science, 2004, 24(5): 130-135(in Chinese). doi: 10.3321/j.issn:1000-6923.2004.05.014
[30] 倪文海, 刘欢, 刘振涛, 等. 水稻秸杆腐解过程溶解性有机质红外光谱研究 [J]. 土壤, 2013, 45(2): 1220-1226. doi: 10.3969/j.issn.0253-9829.2013.02.005 NI W H, LIU H, LIU Z T, et al. Study on Fourier-transform infrared spectra of dissolved organic matters extracted from rice straw at different decay stages [J]. Soils, 2013, 45(2): 1220-1226(in Chinese). doi: 10.3969/j.issn.0253-9829.2013.02.005
[31] LEENHEER J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters [J]. Environmental Science & Technology, 1981, 15(5): 578-587. [32] CHEFETZ B, HADER Y, CHEN Y. Dissolved organic carbon fractions formed during composting of municipal solid waste: Properties and significance [J]. Acta Hydrochimica et Hydrobiologica, 1998, 26(3): 172-179. doi: 10.1002/(SICI)1521-401X(199805)26:3<172::AID-AHEH172>3.0.CO;2-5 [33] 吴东明, 李勤奋, 武春媛. 铁铝土对溶解性有机质的吸附特性 [J]. 环境化学, 2016, 35(4): 639-650. doi: 10.7524/j.issn.0254-6108.2016.04.2015112205 WU D M, LI Q F, WU C Y. Adsorption of dissolved organic matter on ferrallitic soils [J]. Environmental Chemistry, 2016, 35(4): 639-650(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.04.2015112205
[34] GALINHA C F, CARVALHO G, PORTUGAL C A M, et al. Real-time monitoring of membrane bioreactors with 2D-fluorescence data and statistically based models [J]. Water Science and Technology, 2011, 63(7): 1381-1388. doi: 10.2166/wst.2011.195 [35] 卢松, 江韬, 张进忠, 等. 两个水库型湖泊中溶解性有机质三维荧光特征差异 [J]. 中国环境科学, 2015, 35(2): 516-523. LU S, JIANG T, ZHANG J Z, et al. Three-dimensional fluorescence characteristic differences of dissolved organic matter(DOM) from two typical reservoirs [J]. China Environmental Science, 2015, 35(2): 516-523(in Chinese).
[36] YU H B, SONG Y H, LIU R X, et al. Identifying changes in dissolved organic matter content and characteristics by fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis during wastewater treatment [J]. Chemosphere, 2014, 113: 79-86. doi: 10.1016/j.chemosphere.2014.04.020 [37] 陈诗雨, 李燕, 李爱民. 溶解性有机物研究中三维荧光光谱分析的应用 [J]. 环境科学与技术, 2015, 38(5): 64-68,73. CHEN S Y, LI Y, LI A M. Application of three-dimensional fluorescence spectroscopy in the study of dissolved organic matter [J]. Environmental Science & Technology, 2015, 38(5): 64-68,73(in Chinese).
[38] 龚贵清, 唐兴萍, 孙涛, 等. 不同类型DOM对三峡库区消落带土壤汞甲基化的影响 [J]. 环境科学学报, 2019, 39(9): 3073-3079. doi: 10.13671/j.hjkxxb.2019.0190 GONG G Q, TANG X P, SUN T, et al. Effects of different DOMs on mercury methylation in soil in water-level-fluctuating zone of the Three Gorges Reservoir area [J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3073-3079(in Chinese). doi: 10.13671/j.hjkxxb.2019.0190
[39] 江韬, Joeri Kaal, 梁俭, 等. 三峡库区消落带土壤溶解性有机质溯源: 基于氮/碳比值的线性双端元源负荷分析 [J]. 环境科学, 2019, 40(6): 2647-2656. JIANG T, KAAL J, LIANG J, et al. Use of the nitrogen/carbon ratio(N/C) and two end-member sources mixing model to identify the origins of dissolved organic matter from soils in the water-level fluctuation zones of the Three Gorges reservoir [J]. Environmental Science, 2019, 40(6): 2647-2656(in Chinese).
[40] HER N, AMY G, MCKNIGHT D, et al. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection [J]. Water Research, 2003, 37(17): 4295-4303. doi: 10.1016/S0043-1354(03)00317-8 [41] 丰桂珍, 董秉直. 水中藻类溶解性有机物特性研究 [J]. 环境科学与技术, 2016, 39(11): 144-149. FENG G Z, DONG B Z. Study on the characteristics of algogenic organic matters [J]. Environmental Science & Technology, 2016, 39(11): 144-149(in Chinese).
[42] GUGGENBERGER G, GLASER B, ZECH W. Heavy metal binding by hydrophobic and hydrophilic dissolved organic carbon fractions in a Spodosol A and B horizon [J]. Water, Air, and Soil Pollution, 1994, 72(1/2/3/4): 111-127. [43] CHIRENJE T, MA L Q. Effects of acidification on metal mobility in a papermill-ash amended soil [J]. Journal of Environmental Quality, 1999, 28(3): 760-766. [44] LIANG P, SHAO D D, WU S C, et al. The influence of mariculture on mercury distribution in sediments and fish around Hong Kong and adjacent mainland China waters [J]. Chemosphere, 2011, 82(7): 1038-1043. doi: 10.1016/j.chemosphere.2010.10.061 [45] BALOGH S J, SWAIN E B, NOLLET Y H. Characteristics of mercury speciation in Minnesota rivers and streams [J]. Environmental Pollution, 2008, 154(1): 3-11. doi: 10.1016/j.envpol.2007.11.014 [46] HAITZER M, AIKEN G R, RYAN J N. Binding of mercury(II) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio [J]. Environmental Science & Technology, 2002, 36(16): 3564-3570. [47] 何小松, 席北斗, 魏自民, 等. 三维荧光光谱研究垃圾渗滤液水溶性有机物与汞相互作用 [J]. 分析化学, 2010, 38(10): 1417-1422. HE X S, XI B D, WEI Z M, et al. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of complexation between mercury(Ⅱ) and dissolved organic matter extracted from landfill leachate [J]. Chinese Journal of Analytical Chemistry, 2010, 38(10): 1417-1422(in Chinese).