-
地下水作为水资源重要组成部分,不仅是居民生活用水和工农业生产用水的主要来源,也是推动社会经济可持续发展和维持区域生态环境稳定的重要保障[1]. 在自然条件下,地下水化学组分主要受水文、气候和地质等因素控制;但随着人类活动的加剧,地下水化学组分也受到工农业生产和地下水超采等因素影响[2-3]. 开展地下水化学特征及控制因素研究,有助于揭示地下水演化过程.
目前,研究地下水化学特征及控制因素的传统方法主要有水化学类型法、图解法和离子比例关系等[4-5]. 近年来,受人类活动影响,地下水水化学组分来源趋于复杂化,仅采用传统方法难以区分自然因素和人为因素对地下水的控制作用[6]. 因此,多元统计分析、水文地球化学模拟和同位素技术等方法逐渐被应用到地下水化学特征及控制因素的研究[7-10].
重庆市万州区地处三峡库区腹心地带,是“成渝地区双城经济圈建设”在渝东北地区的经济主战场. 该区是以山地农业和农村经济为主的农业大区,浅层地下水是该区居民生活用水和工农业生产用水的主要来源. 以往关于重庆市浅层地下水的研究多集中在污染风险评价、污染源解析与环境影响因素识别等方面[11-12],而对于浅层地下水化学特征及控制因素的研究相对缺乏. 因此,本文综合运用数理统计、Piper三线图、Gibbs图、离子比例关系、Pearson相关性分析、因子分析和水文地球化学模拟等方法,对重庆市万州区浅层地下水进行系统分析,阐明该区浅层地下水化学特征及控制因素,以期为区内地下水资源的合理开发利用、生态环境保护及经济圈的建设提供科学依据.
重庆市万州区浅层地下水化学特征及控制因素
Hydrochemical characteristics and possible controls of shallow groundwater in Wanzhou District, Chongqing
-
摘要: 浅层地下水作为重庆市万州区居民生活用水和工农业生产用水的主要来源,是推动该区社会经济可持续发展和维持区域生态环境稳定的重要保障. 为研究重庆市万州区浅层地下水化学特征及控制因素,于2021年10月采集浅层地下水样品56组. 综合运用数理统计、Piper三线图、Gibbs图、离子比例关系、Pearson相关性分析、因子分析和水文地球化学模拟等方法,对万州区浅层地下水化学特征、离子来源和控制因素进行分析. 结果表明,研究区浅层地下水以淡软水为主,且呈弱碱性,阴阳离子以
${\rm{HCO}}_3^{-} $ 、Ca2+为主,浅层地下水类型以HCO3-Ca为主;由研究区中部至边缘地区,阴离子类型由HCO3型向HCO3·SO4、HCO3·Cl·SO4和Cl·SO4型演变,阳离子类型由Ca型向Ca·Mg、Na·Ca和Na·Ca·Mg型演变;浅层地下水离子主要来源于碳酸盐岩、硅酸盐岩和岩盐溶滤;浅层地下水化学组分受岩石溶滤作用、正向阳离子交换作用和人类活动作用控制;水文地球化学模拟结果表明,沿浅层地下水流向,浅层地下水离子浓度呈递增趋势,岩盐、方解石和白云石均发生溶解,西部浅层地下水的阳离子交换作用强于东部. 研究结果可为重庆市万州区浅层地下水资源的合理开发利用、生态环境保护和经济圈的建设提供科学依据.Abstract: Shallow groundwater, as the main source of domestic water and industrial and agricultural production water for residents in Wanzhou District, Chongqing, is an important guarantee for promoting the sustainable socio-economic development of the area and maintaining the stability of the regional eco-environment. In order to study the hydrochemical characteristics and control factors of shallow groundwater in Wanzhou District, Chongqing, 56 sets of shallow groundwater samples were collected in October 2021. Comprehensive use of mathematical statistics, Ternry diagram, Gibbs diagram, ion proportional relationship, Pearson correlation analysis, factor analysis methods and hydrogeochemical simulation are used to analyze the hydrochemical characteristics, ion sources and control factors of shallow groundwater in Wanzhou. The results showed that: The shallow groundwater in the study area are dominated by fresh and soft water, and it was weakly alkaline, the anions and anions are dominated by${\rm{HCO}}_3^{-} $ and Ca2+, and the type of shallow groundwater is dominated by HCO3-Ca; From the middle to the edge of the study area, the types of anions evolve from HCO3 to HCO3·SO4, HCO3·Cl·SO4 and Cl·SO4, and the types of cations evolve from Ca to Ca·Mg, Na·Ca and Na·Ca·Mg; The ions of shallow groundwater are mainly originated from filtration of carbonate rocks, silicate rocks and halite; The chemical components of shallow groundwater are controlled by rock dissolution, positive cation exchange and human activities; The results of hydrogeochemical simulation showed that along the flow direction of shallow groundwater, the ion concentration in shallow groundwater was increasing, halite, calcite and dolomite were dissolved, the cation exchange effect of shallow groundwater in the west was stronger than in the east. The research results can provide a scientific basis for the rational development and utilization of shallow groundwater resources, eco-environmental protection and the construction of economic circles in Wanzhou District, Chongqing. -
图 10 重庆市万州区浅层地下水γ(Na++K+-Cl−)/γ(
${\rm{HCO}}_3^{-} $ )与γ(Ca2++ Mg2+-${\rm{SO}}_4^{2-} $ ) /γ(HCO3-)、γ(${\rm{SO}}_4^{2-} $ )/γ(Ca2+)与γ(${\rm{NO}}_3^{-} $ )/γ(Ca2+)关系Figure 10. Relationship between γ(Na++K+-Cl-)/γ(
${\rm{HCO}}_3^{-} $ ) and γ(Ca2++ Mg2+-${\rm{SO}}_4^{2-} $ )/γ(HCO3-), and γ(${\rm{SO}}_4^{2-} $ )/γ(Ca2+) and γ(${\rm{NO}}_3^{-} $ )/γ(Ca2+) of shallow groundwater in Wanzhou District, Chongqing表 1 重庆市万州区浅层地下水离子间相关系数
Table 1. Correlation coefficients between ions of shallow groundwater in Wanzhou District, Chongqing
Na++K+ Ca2+ Mg2+ ${\rm{HCO}}_3^{-} $ Cl− ${\rm{SO}}_4^{2-} $ ${\rm{NO}}_3^{-} $ Na++K+ 1 Ca2+ 0.245 1 Mg2+ 0.616** 0.577* 1 ${\rm{HCO}}_3^{-} $ 0.265* 0.937* 0.691** 1 Cl− 0.652** 0.284* 0.520** 0.201 1 ${\rm{SO}}_4^{2-} $ 0.448** 0.471** 0.369** 0.294* 0.325* 1 ${\rm{NO}}_3^{-} $ 0.534** 0.035 0.184 −0.141 0.474** 0.266* 1 注:** 表示在0.01水平上线性相关,* 表示在0.05水平上线性相关.
Note: ** P<0.01; * P<0.05.表 2 重庆市万州区浅层地下水旋转成分矩阵
Table 2. Rotational component matrix of shallow groundwater in Wanzhou District, Chongqing
水化学组分
Hydrochemical compositions西部 West 东部 East F1 F2 F3 F1 F2 TDS 0.970 0.213 0.086 0.907 0.159 TH 0.972 0.133 0.134 0.984 0.138 Na++K+ 0.336 0.769 −0.073 0.120 0.943 Ca2+ 0.951 −0.064 0.203 0.968 0.056 Mg2+ 0.584 0.684 −0.143 0.736 0.376 ${\rm{HCO}}_3^{-} $ 0.975 0.053 −0.192 0.985 −0.105 Cl− 0.041 0.868 0.185 0.343 0.816 SO42- 0.325 0.020 0.828 0.460 0.628 ${\rm{NO}}_3^{-} $ −0.219 0.581 0.635 −0.028 0.880 贡献率/% 48.320 24.674 13.905 50.939 32.488 累计贡献率/% 48.320 72.994 86.889 50.939 83.427 表 3 重庆市万州区浅层地下水路径反向模拟结果
Table 3. Reverse simulation results of routes of shallow groundwater in Wanzhou District, Chongqing
矿物相
Mineral phase化学式
Chemical formula路径1 / (mmol·L−1)
Routes1路径2/ (mmol·L−1)
Routes2G46→G39 G39→G54 G24→G18 G18→G12 岩盐 NaCl 2.010×10−4 5.478×10−4 2.146×10−5 1.129×10−4 方解石 CaCO3 1.696×10−3 −1.049×10−4 2.352×10−4 8.438×10−4 白云石 CaMg(CO3) 2 1.809×10−4 3.568×10−4 1.220×10−4 3.263×10−4 CO2 CO2 2.818×10−3 2.504×10−4 5.880×10−4 2.001×10−3 阳离子交换 NaX 3.195×10−4 9.546×10−4 1.699×10−4 1.249×10−5 CaX2 −1.597×10−4 −4.773×10−4 −8.494×10−5 −6.246×10−6 注:表内数值为摩尔转移量,正值表示溶解,负值表示沉淀.
Note: The values in the table are molar transfer amount, positive value indicates dissolution, and negative value indicates precipitation. -
[1] LUKAČ REBERSKI J, RUBINIĆ J, TERZIĆ J, et al. Climate change impacts on groundwater resources in the coastal karstic adriatic area: A case study from the dinaric Karst [J]. Natural Resources Research, 2020, 29(3): 1975-1988. doi: 10.1007/s11053-019-09558-6 [2] XING L N, GUO H M, ZHAN Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain [J]. Journal of Asian Earth Sciences, 2013, 70/71: 250-264. doi: 10.1016/j.jseaes.2013.03.017 [3] SUNKARI E D, ABU M, BAYOWOBIE P S, et al. Hydrogeochemical appraisal of groundwater quality in the Ga west municipality, Ghana: Implication for domestic and irrigation purposes [J]. Groundwater for Sustainable Development, 2019, 8: 501-511. doi: 10.1016/j.gsd.2019.02.002 [4] 王珺瑜, 王家乐, 靳孟贵. 济南泉域岩溶水水化学特征及其成因 [J]. 地球科学, 2017, 42(5): 821-831. WANG J Y, WANG J L, JIN M G. Hydrochemical characteristics and formation causes of Karst water in Jinan spring catchment [J]. Earth Science, 2017, 42(5): 821-831(in Chinese).
[5] LOVE D, HALLBAUER D, AMOS A, et al. Factor analysis as a tool in groundwater quality management: Two southern African case studies [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2004, 29(15/16/17/18): 1135-1143. [6] RAYNE T W, BRADBURY K R, KRAUSE J J. Impacts of a rural subdivision on groundwater quality: Results of long-term monitoring [J]. Ground Water, 2019, 57(2): 279-291. doi: 10.1111/gwat.12666 [7] 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析 [J]. 中国地质, 2016, 43(4): 1446-1456. YUAN J F, DENG G S, XU F, et al. The multivariate statistical analysis of chemical characteristics and influencing factors of Karst groundwater in the northern part of Bijie City, Guizhou Province [J]. Geology in China, 2016, 43(4): 1446-1456(in Chinese).
[8] XIAO Q, JIANG Y J, SHEN L C, et al. Origin of calcium sulfate-type water in the Triassic carbonate thermal water system in Chongqing, China: A chemical and isotopic reconnaissance [J]. Applied Geochemistry, 2018, 89: 49-58. doi: 10.1016/j.apgeochem.2017.11.011 [9] BUSICO G, CUOCO E, KAZAKIS N, et al. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy [J]. Environmental Pollution, 2018, 234: 260-269. doi: 10.1016/j.envpol.2017.11.053 [10] van GELDERN R, SCHULTE P, MADER M, et al. Insights into agricultural influences and weathering processes from major ion patterns [J]. Hydrological Processes, 2018, 32(7): 891-903. doi: 10.1002/hyp.11461 [11] 张虹, 张代钧, 卢培利. 重庆市页岩气开采的浅层地下水污染风险评价 [J]. 环境工程学报, 2017, 11(4): 2016-2024. doi: 10.12030/j.cjee.201510208 ZHANG H, ZHANG D J, LU P L. Primary assessment of shallow ground water pollution risk for shale gas exploitation in Chongqing [J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2016-2024(in Chinese). doi: 10.12030/j.cjee.201510208
[12] 张虹, 魏兴萍, 彭名涛. 重庆市浅层地下水污染源解析与环境影响因素识别 [J]. 环境科学研究, 2021, 34(12): 2896-2906. doi: 10.13198/j.issn.1001-6929.2021.08.10 ZHANG H, WEI X P, PENG M T. Analysis of pollution sources and identification of environmental influencing factors of shallow groundwater in Chongqing, China [J]. Research of Environmental Sciences, 2021, 34(12): 2896-2906(in Chinese). doi: 10.13198/j.issn.1001-6929.2021.08.10
[13] 姜体胜, 曲辞晓, 王明玉, 等. 北京平谷平原区浅层地下水化学特征及成因分析 [J]. 干旱区资源与环境, 2017, 31(11): 122-127. JIANG T S, QU C X, WANG M Y, et al. Hydrochemical characteristics of shallow groundwater and the origin in the Pinggu Plain, Beijing [J]. Journal of Arid Land Resources and Environment, 2017, 31(11): 122-127(in Chinese).
[14] 冯建国, 赫明浩, 李贵恒, 等. 泰莱盆地孔隙水水化学特征及其控制因素分析 [J]. 环境化学, 2019, 38(11): 2594-2600. FENG J G, HE M H, LI G H, et al. Analysis of hydrochemical characteristics and controlling factors of porewater in the Tailai Basin [J]. Environmental Chemistry, 2019, 38(11): 2594-2600(in Chinese).
[15] 陈晨, 高宗军, 李伟, 等. 泰莱盆地地下水化学特征及其控制因素 [J]. 环境化学, 2019, 38(6): 1339-1347. doi: 10.7524/j.issn.0254-6108.2018090504 CHEN C, GAO Z J, LI W, et al. Characteristics and possible factors of hydrochemistry in the groundwater in Tailai Basin [J]. Environmental Chemistry, 2019, 38(6): 1339-1347(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090504
[16] 刘鑫, 向伟, 马小军, 等. 黄土高原中部浅层地下水化学特征及影响因素 [J]. 中国环境科学, 2021, 41(11): 5201-5209. doi: 10.3969/j.issn.1000-6923.2021.11.028 LIU X, XIANG W, MA X J, et al. Hydrochemical characteristics and controlling factors of shallow groundwater in the Chinese Loess Plateau [J]. China Environmental Science, 2021, 41(11): 5201-5209(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.11.028
[17] 林聪业, 孙占学, 高柏, 等. 拉萨地区地下水水化学特征及形成机制研究 [J]. 地学前缘, 2021, 28(5): 49-58. doi: 10.13745/j.esf.sf.2021.2.2 LIN C Y, SUN Z X, GAO B, et al. Hydrochemical characteristics and formation mechanism of groundwater in Lhasa area, China [J]. Earth Science Frontiers, 2021, 28(5): 49-58(in Chinese). doi: 10.13745/j.esf.sf.2021.2.2
[18] LEHN G O, JACOBSON A D, DOUGLAS T A, et al. Constraining seasonal active layer dynamics and chemical weathering reactions occurring in North Slope Alaskan watersheds with major ion and isotope (δ34SSO4, δ13CDIC, 87Sr/86Sr, δ44/40Ca, and δ44/42Ca) measurements [J]. Geochimica et Cosmochimica Acta, 2017, 217: 399-420. doi: 10.1016/j.gca.2017.07.042 [19] 魏世博, 王哲, 李飞, 等. 内蒙古额济纳平原地下水氢氧同位素和水化学特征及其演化规律[J/OL]. 中国地质: 1-14. WEI S B, WANG Z, LI F, et al. Characteristics of hydrogen and oxygen isotope and hydrochemistry in the Ejina plain groundwater and its hydrochemical evolution[J/OL]. Geology in China: 1-14(in Chinese).
[20] 孔晓乐, 杨永辉, 曹博, 等. 永定河上游地表水-地下水水化学特征及其成因分析 [J]. 环境科学, 2021, 42(9): 4202-4210. KONG X L, YANG Y H, CAO B, et al. Hydrochemical characteristics and factors of surface water and groundwater in the upper Yongding River Basin [J]. Environmental Science, 2021, 42(9): 4202-4210(in Chinese).
[21] 钱程, 武雄. 盐池内流区地下水水化学特征及其形成作用 [J]. 干旱区资源与环境, 2016, 30(3): 169-175. QIAN C, WU X. Hydrochemical characteristics and formation mechanism of groundwater in the inner flow area in Yanchi [J]. Journal of Arid Land Resources and Environment, 2016, 30(3): 169-175(in Chinese).
[22] 曾小仙, 曾妍妍, 周金龙, 等. 石河子市浅层地下水化学特征及其成因分析 [J]. 干旱区研究, 2021, 38(1): 68-75. doi: 10.13866/j.azr.2021.01.08 ZENG X X, ZENG Y Y, ZHOU J L, et al. Hydrochemical characteristics and cause analysis of the shallow groundwater in Shihezi City [J]. Arid Zone Research, 2021, 38(1): 68-75(in Chinese). doi: 10.13866/j.azr.2021.01.08
[23] 孟舒然, 吕敦玉, 王翠玲, 等. 郑州市中牟县地下水水化学特征及控制因素 [J]. 环境化学, 2022, 41(3): 977-986. doi: 10.7524/j.issn.0254-6108.2021010802 MENG S R, LV D Y, WANG C L, et al. Research of groundwater chemical characteristics and controlling factors in Zhongmu County, Zhengzhou City [J]. Environmental Chemistry, 2022, 41(3): 977-986(in Chinese). doi: 10.7524/j.issn.0254-6108.2021010802
[24] 房丽晶, 高瑞忠, 贾德彬, 等. 草原流域地下水化学时空特征及环境驱动因素: 以内蒙古巴拉格尔河流域为例 [J]. 中国环境科学, 2021, 41(5): 2161-2169. doi: 10.3969/j.issn.1000-6923.2021.05.020 FANG L J, GAO R Z, JIA D B, et al. Spatial-temporal characteristics of groundwater quality and its environmental driving factors of Steppe Basin—taken Balaguer River Basin of Inner Mongolia for instance [J]. China Environmental Science, 2021, 41(5): 2161-2169(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.05.020
[25] GIBBS R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [26] MARANDI A, SHAND P. Groundwater chemistry and the Gibbs diagram [J]. Applied Geochemistry, 2018, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009 [27] 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征及演化规律 [J]. 环境科学, 2019, 40(9): 4042-4051. doi: 10.13227/j.hjkx.201901211 WEI X, ZHOU J L, NAI W H, et al. Hydrochemical characteristics and evolution of groundwater in the Kashgar delta area in Xinjiang [J]. Environmental Science, 2019, 40(9): 4042-4051(in Chinese). doi: 10.13227/j.hjkx.201901211
[28] 寇永朝, 华琨, 李洲, 等. 泾河支流地表水地下水的水化学特征及其控制因素 [J]. 环境科学, 2018, 39(7): 3142-3149. KOU Y C, HUA K, LI Z, et al. Major ionic features and their possible controls in the surface water and groundwater of the Jinghe River [J]. Environmental Science, 2018, 39(7): 3142-3149(in Chinese).
[29] 成思, 温瑶, 许畅畅, 等. 崇明岛浅层地下水化学特征及其影响机制 [J]. 环境科学研究, 2021, 34(5): 1120-1128. doi: 10.13198/j.issn.1001-6929.2020.09.13 CHENG S, WEN Y, XU C C, et al. Hydrochemical characteristics and impact mechanism of shallow groundwater in Chongming Island, China [J]. Research of Environmental Sciences, 2021, 34(5): 1120-1128(in Chinese). doi: 10.13198/j.issn.1001-6929.2020.09.13
[30] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30. [31] XIAO J, JIN Z D, WANG J, et al. Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau [J]. Quaternary International, 2015, 380/381: 237-246. doi: 10.1016/j.quaint.2015.01.021 [32] SINGH N, SINGH R P, KAMAL V, et al. Assessment of hydrogeochemistry and the quality of groundwater in 24-Parganas districts, West Bengal [J]. Environmental Earth Sciences, 2015, 73(1): 375-386. doi: 10.1007/s12665-014-3431-2 [33] NEMATOLLAHI M J, CLARK M J R, EBRAHIMI P, et al. Preliminary assessment of groundwater hydrogeochemistry within Gilan, a northern Province of Iran [J]. Environmental Monitoring and Assessment, 2018, 190(4): 242. doi: 10.1007/s10661-018-6543-4 [34] 何锦, 张幼宽, 赵雨晴, 等. 鲜水河断裂带虾拉沱盆地断面地下水化学特征及控制因素 [J]. 环境科学, 2019, 40(3): 1236-1244. doi: 10.13227/j.hjkx.201808117 HE J, ZHANG Y K, ZHAO Y Q, et al. Hydrochemical characteristics and possible controls of groundwater in the xialatuo basin section of the Xianshui River [J]. Environmental Science, 2019, 40(3): 1236-1244(in Chinese). doi: 10.13227/j.hjkx.201808117
[35] 张涛, 何锦, 李敬杰, 等. 蛤蟆通河流域地下水化学特征及控制因素 [J]. 环境科学, 2018, 39(11): 4981-4990. doi: 10.13227/j.hjkx.201804070 ZHANG T, HE J, LI J J, et al. Major ionic features and possible controls in the groundwater in the hamatong river basin [J]. Environmental Science, 2018, 39(11): 4981-4990(in Chinese). doi: 10.13227/j.hjkx.201804070
[36] MOSTAZA-COLADO D, CARREÑO-CONDE F, RASINES-LADERO R, et al. Hydrogeochemical characterization of a shallow alluvial aquifer: 1 baseline for groundwater quality assessment and resource management [J]. Science of the Total Environment, 2018, 639: 1110-1125. doi: 10.1016/j.scitotenv.2018.05.236 [37] PAZAND K, KHOSRAVI D, GHADERI M R, et al. Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan Basin in Central Iran [J]. Groundwater for Sustainable Development, 2018, 6: 245-254. doi: 10.1016/j.gsd.2018.01.008 [38] BARZEGAR R, ASGHARI MOGHADDAM A, NAZEMI A H, et al. Evidence for the occurrence of hydrogeochemical processes in the groundwater of Khoy plain, northwestern Iran, using ionic ratios and geochemical modeling [J]. Environmental Earth Sciences, 2018, 77(16): 597. doi: 10.1007/s12665-018-7782-y