-
工业大麻是指四氢大麻酚(THC)含量低于0.3%的大麻,大麻酚是工业大麻中最重要的化学成分,其中包括大麻酚(CBN)、大麻二酚(CBD)、四氢大麻酚(THC)及其异构体等. 目前,对植物大麻酚的分析方法主要有气相色谱法(GC) [1-2]、高效液相色谱法(HPLC)[3-4]、高效液相色谱-串联质谱法(LC-MS/MS),其他技术包括薄层色谱(TLC)、核磁共振(NMR)和近红外光谱(NIR),这些方法都有其优点和缺点. GC是分析大麻提取物中植物大麻酚最常用的方法,但是,GC分析所需的高温触发了植物大麻酚的酸形式的脱羧,这种分解阻碍了新鲜样品中主要化合物的检测,且存在化合物相关动力学,从而影响了的定量. 此外,高温还可引发其他反应,如氧化和异构化. HPLC灵敏度低、受基质干扰较大,如果使用紫外检测,色谱必须考虑选择性,以避免其他吸收紫外线的化合物的干扰. TLC技术具有快速、简便、廉价等优点,但灵敏度和选择性不如主流技术. NMR具有灵敏、适合定量分析的特点,但价格昂贵. NIR是快速鉴别的方法,不适合定量分析的方法. 高效液相色谱法-串联质谱(LC-MS/MS)法分析范围广、选择性好、灵敏度高、分析结果可靠, 因此,本实验采用高效液相色谱法-串联质谱法同时检测8种大麻酚,检测时间仅为5 min,有效提高检测效率和适用范围,为我国工业大麻的监管提供了重要的技术手段.
超高效液相色谱−串联质谱法同时检测工业大麻中8种大麻酚的含量
Simultaneous determination of 8 cannabinols in industrial hemp by ULTRA performance liquid chromatography-Tandem mass spectrometry
-
摘要: 本文建立了超高效液相色谱−串联质谱(UPLC-MS/MS)法测定工业大麻中8种大麻酚的检测方法. 样品经烘干后用无水乙醇超声提取,采用QuEChERS方式净化,经Luna Omega 1.6 μm Polar C18(100 mm×2.1 mm)色谱柱分离,以5 mmol乙酸铵和乙腈为流动相进行梯度洗脱,电喷雾负离子模式进行离子扫描,多反应监测模式下测定8种大麻酚,内标法定量. 在0—10 μg·kg−1内,线性相关系数(R2)均大于0.999,方法检出限为0.02—0.15 μg·kg−1,定量限为0.08—0.50 μg·kg−1,在添加水平为1 LOQ、5 LOQ和10 LOQ时的回收率在89.9%—104.7%,相对标准偏差(RSD)在0.9%—4.1%.
-
关键词:
- 工业大麻 /
- 大麻二酚(CBD) /
- 四氢大麻酚(THC) /
- 超高效液相色谱-串联质谱法(UPLC-MS/MS)
Abstract: A method for the determination of 8 cannabinol in industrial hemp by ULTRA-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. After drying, the samples were extracted by ultrasonic extraction with anhydrous ethanol, purified by QuEChERS method, and separated on a Luna Omega 1.6 μm Polar C18 (100 mm×2.1 mm) column. Gradient elution was performed with 5 mmol ammonium acetate and acetonitrile as mobile phase, and ion scanning was performed in electrospray negative ion mode. Determination of 8 cannabinol under multiple response monitoring mode. THC-D3 was used as internal standard and quantified by internal standard method. The linear correlation coefficients (R2) of the method were greater than 0.999 in the range of 0—10 μg·kg−1, the limits of detection were 0.02—0.15 μg·kg−1, and the limits of quantification were 0.08—0.50 μg·kg-1. The recoveries at 1 LOQ, 5 LOQ and 10 LOQ levels ranged from 89.9% to 104.7%, and the relative standard deviations (RSD) ranged from 0.9% to 4.1%. -
表 1 8种大麻酚及内标的质谱参数
Table 1. Mass spectrometric parameters of 8 cannabinol and one internal standard
化合物 母离子(m/z) 子离子(m/z) 锥孔电压/V 碰撞能量/eV 保留时间/min THCVA 329.30 217.20*,285.20 −35 −30 1.37 CBDA 357.20 107.00*,339.20 −40 −25 1.82 THCA 357.30 245.10*,313.20 −25 −30 1.67 CBGA 359.40 315.40*,341.30 −50 −20 1.59 CBN 309.30 222.00*,279.20 −20 −45 3.01 THC 313.26 191.20*,245.10 −65 −25 3.27 CBD 313.34 179.10*,245.10 −55 −20 2.64 CBG 315.30 136.03*,191.08 −60 −25 2.57 THC-D3 316.20 194.10*,248.10 −70 −28 3.26 *表示定量离子对 表 2 8种大麻酚线性范围、检出限、定量限和相关系数
Table 2. Linear equations, linear ranges, LODs, LOQs and correlation coefficients of eight cannabinol
化合物 检出限/(μg·kg−1) 定量限/(μg·kg−1) 相关系数 THCVA 0.02 0.08 0.9995 THCA 0.02 0.08 0.9997 THC 0.10 0.30 0.9990 CBG 0.15 0.50 0.9998 CBGA 0.02 0.08 0.9998 CBN 0.07 0.25 0.9996 CBD 0.13 0.43 0.9993 CBDA 0.13 0.42 0.9994 表 3 8种大麻酚在花叶、茎秆、种子种的平均回收率和相对标准偏差
Table 3. Average recoveries and relative standard deviations of eight cannabinol in Mosaic, stem and seed (RSD,n=6)
化合物 添加量/(μg·kg−1) 花、叶 茎秆 种子 回收率/% RSD/% 回收率/% RSD/% 回收率/% RSD/% THCVA 0.1 96.8 3.1 102.3 2.1 97.8 3.2 0.5 92.4 2.9 95.6 3.5 96.4 1.3 1.0 95.4 2.4 93.4 3.1 95.3 2.1 THCA 0.1 93.3 2.6 96.1 1.4 93.9 3.9 0.5 91.9 1.9 98.2 0.9 92.0 2.9 1.0 103.3 2.3 93.7 2.0 91.7 2.6 THC 0.5 98.3 2.2 97.7 1.8 94.6 3.3 2.5 97.7 1.9 96.3 2.1 97.3 4.1 5.0 100.2 1.1 99.6 1.7 92.1 2.6 CBG 0.5 96.8 2.7 99.6 2.0 91.4 2.1 2.5 97.0 3.5 94.7 3.1 97.4 2.4 5.0 94.3 2.9 104.9 2.8 91.0 1.9 CBGA 0.1 92.2 3.7 98.5 2.4 92.4 1.8 0.5 93.3 4.0 92.4 3.1 90.6 3.4 1.0 91.9 2.9 93.6 2.9 92.0 2.5 CBN 0.1 95.1 3.1 95.6 3.7 98.3 2.7 0.5 98.6 2.2 93.4 2.6 94.4 1.9 1.0 93.8 2.7 94.1 2.4 94.1 1.1 CBD 0.5 99.1 2.3 93.5 2.7 92.4 3.0 2.5 104.7 1.9 94.3 3.1 91.1 2.1 5.0 102.2 1.4 99.1 1.8 91.9 1.6 CBDA 0.5 89.9 4.1 91.5 2.9 94.4 0.9 2.5 93.4 3.4 93.2 3.1 98.5 3.1 5.0 92.1 3.0 94.1 2.2 91.2 1.8 -
[1] CIOLINO L A, RANIERI T L, TAYLOR A M. Commercial cannabis consumer products part 1: GC–MS qualitative analysis of cannabis cannabinoids [J]. Forensic science international, 2018, 289: 429-437. doi: 10.1016/j.forsciint.2018.05.032 [2] BARANAUSKAITE J, MARKSA M, IVANAUSKAS L, et al. Development of extraction technique and GC/FID method for the analysis of cannabinoids in Cannabis sativa L. spp. santicha (hemp) [J]. Phytochemical Analysis, 2020, 31(4): 516-521. doi: 10.1002/pca.2915 [3] BRIGHENTI V, PELLATI F, STEINBACH M, et al. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 143: 228-236. doi: 10.1016/j.jpba.2017.05.049 [4] CHANG C W, TUNG C W, TSAI C C, et al. Determination of cannabinoids in hemp nut products in Taiwan by HPLC‐MS/MS coupled with chemometric analysis: quality evaluation and a pilot human study [J]. Drug Testing and Analysis, 2017, 9(6): 888-897. doi: 10.1002/dta.2062