-
受气候暖化影响,青藏高原冻土层不断退化[1–3],冰川面积也在持续减少[4],其水文条件和生态过程因此受到了极大的影响[5-6]. 研究表明,近几十年来青藏高原湖泊面积呈逐渐增加趋势[7],部分湖泊因水量激增而出现湖堤溃决现象,严重影响了湖泊流域内的生态环境. 其中位于青藏高原腹地的卓乃湖在2011年发生溃决[8],大量湖水随地势下泄,经库赛湖、海丁诺尔湖,最终汇入盐湖[9],而盐湖作为尾闾湖,其水域面积不断扩张. 为避免盐湖溃决对其周围的青藏公路、铁路[8]等重要设施造成破坏,现已将盐湖通过泄水通道引入清水河[9],盐湖从此转变为外流湖. 水化学成分及其成因分析是研究水质演化、水环境变化及水文循环的关键信息因子[5,10–14],面对盐湖水文情况的改变,有必要研究泄流后盐湖地区水体的水化学成分变化,以揭示气候暖化对盐湖流域水文以及水质演变的影响,而且其对于青藏高原的暖湿化研究以及水资源保护等内容具有重要的指示意义.
近年来,人们对于盐湖地区的研究主要集中在盐湖水量平衡[15-16]、表层沉积物类型[17-18]、泄流前水化学特征[19-20]等内容,但对其组分成因、水化学演化以及地下水水化学方面却鲜有报道. 盐湖、清水河等水体水化学成分受盐湖泄流影响而有不同程度的变化,众多研究表明水化学图解法、离子比值法、地球化学模拟以及多元统计分析等方法[21–24]可以较好地分析水体的水化学类型及水化学过程,其中多元统计分析能够揭示水化学成分以及不同水体之间的关系,而且有助于进一步分析水岩相互作用,确定水化学成分的来源,是研究水化学和水质时空变化的有效工具[14,21-22],而被广泛应用于水化学研究中.
本文选取青藏高原腹地的盐湖地区为研究区,通过Piper图、Gibbs图、矿物饱和指数法、相关分析以及主成分分析等方法分析了盐湖地区泄流后的地表水及地下水化学特征及其成因,并基于多年水化学数据,探讨了盐湖和清水河水化学演化趋势,为青藏高原湖泊等水体水化学演变以及生态环境保护提供科学依据.
青藏高原盐湖地区水化学特征及成因分析
Hydrochemical characteristics and solute sources of the Yanhu Areas on the Qinghai-Tibet Plateau
-
摘要: 青藏高原盐湖地区水体在盐湖泄流后,其水文情况发生较大改变,研究盐湖地区的水化学特征及成因分析对高寒区水资源保护和水质演化具有重要意义. 本文运用Piper图解法、矿物饱和指数法以及多元统计等方法,探究了泄流后盐湖及其下游清水河等水体的水质特征及离子成因. 结果表明,在泄流后,盐湖离子浓度变化较小,而清水河离子浓度扩大至泄流前的2倍. 基于盐湖、清水河多年离子浓度对比发现,盐湖受青藏高原气候暖湿化影响而逐渐淡化,清水河主要因盐湖泄流影响由微咸水变为盐水;盐湖、清水河等常年性地表水及其浅层地下水水化学类型均为Cl·SO4-Na型,以蒸发结晶为主导作用,而北一河水化学类型则为HCO3-Mg·Ca,其浅层地下水与清水河深层地下水离子组成相似,阳离子以Ca2+、Mg2+为主,阴离子则以Cl−、SO42−为主,水化学成分主要受岩石风化溶解影响. 主成分及相关分析表明盐湖地区内Na+、K+、Cl−、Mg2+和SO42−主要来源于岩盐、镁硫酸盐等蒸发盐岩,Ca2+、HCO3−主要来源于白云石以及钙长石等硅酸盐岩,此外Ca2+还受石膏、萤石等矿物溶解影响,NO3−存在明显的区域差异,地区人类活动极少,可能主要来源于冰川融水.Abstract: Due to the discharge of Yanhu lake in the Qinghai-Tibet Plateau, the water quantity and quality of Yanhu waters have changed greatly. It has essential meaning for water resources protection and water quality evolution to study hydrochemical characteristics and the genesis in the alpine region. To better understand hydrochemical characteristics and solute sources in Yanhu waters, we sampled water from the Yanhu area, such as Yanhu lake and its downstream Qingshui river. The Piper diagram, mineral saturation index, and multivariate statistical methods were applied to analyze the hydrochemical composition of samples. The results showed that the ion concentration of the Yanhu lake changed little, while the ion concentration increased 2 times in Qingshui river after the discharge. Besides, based on the comparison of ion concentration between Yanhu lake and Qingshui river for many years, it was found that the water salty of Yanhu lake was gradually weakened, but the Qingshui river changed from brackish water to saline water. The important reasons for the difference may be climate warming and discharge effects. The hydrochemical types of perennial surface water and their shallow groundwater were mainly Cl·SO4-Na type. Hydrochemistry’s dominant roles were evaporation and crystallization, such as Yanhu lake and Qingshui river. However, the hydrochemical type of the Beiyi river was HCO3-Mg·Ca. The ion composition of the shallow groundwater of Beiyi river was similar to the deep groundwater in Qingshui river, and their ion cations were mainly Ca2+, Mg2+, and the major ion anions were Cl− and
${\rm{SO}}_4^{2-} $ . Meanwhile, the rock weathering and dissolution effects were the main controlling factors for the deep groundwater of Qingshui river, Beiyi river, and shallow groundwater of Beiyi river. Principal component analysis and correlation analysis showed that the main sources of Na+, K+, Cl−, Mg2+, and${\rm{SO}}_4^{2-} $ were mainly derived from evaporate salt rocks, such as rock salt and magnesium sulfate, Ca2+ and${\rm{HCO}}_3^{-} $ were mainly derived from dolomite and anorthite in the Yanhu area. In addition, Ca2+ was also affected by the dissolution of minerals such as gypsum and fluorite. There were obvious regional differences in${\rm{NO}}_3^{-} $ , and there were few human activities in this region, which may mainly came from glacier meltwater. -
表 1 水化学指标统计
Table 1. Statistics of hydrochemical parameters
水样点
Sample类型
Type统计量
StatisticspH TDS K+ Na+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2-} $ ${\rm{HCO}}_3^{-} $ ${\rm{CO}}_3^{2-} $ ${\rm{NO}}_3^{-} $ F− H2SiO3 盐湖
Yanhu lake地表水
Surface
water泄流前a 9.21 14105.23 87.09 4618.00 8.70 498.80 7685.44 722.90 525.27 222.26 1.62 0.45 0.80 最大值 9.47 15246.13 95.23 4977.00 25.04 525.40 8288.14 854.80 622.14 231.70 2.04 0.74 1.28 最小值 8.88 13353.91 83.56 4282.00 10.00 483.70 7230.00 681.20 488.70 204.90 0.41 0.26 ND 平均值 9.11 14129.28 88.64 4592.80 14.31 502.92 7657.41 778.84 545.67 221.52 1.54 0.50 0.50 标准差 0.24 788.45 4.39 297.58 6.11 17.64 394.93 63.72 54.44 11.72 0.65 0.19 0.69 清水河
Qingshui
river地表水
Surface
water泄流前a 8.90 2669.54 24.58 657.60 56.30 206.00 1242.98 308.10 299.89 24.03 2.01 1.12 15.24 最大值 9.19 14465.53 87.35 4790.00 19.36 506.80 7790.00 777.40 583.80 228.04 3.21 0.68 4.84 最小值 8.63 12862.31 83.26 4102.00 8.46 471.40 7037.69 667.40 506.80 132.15 0.38 0.42 ND 平均值 8.89 13601.73 84.73 4455.75 13.87 483.50 7370.13 726.93 544.31 194.67 1.82 0.57 1.65 标准差 0.25 724.31 1.92 350.54 4.45 15.89 315.26 46.62 31.46 42.63 1.15 0.12 2.28 浅层
地下水
Sallow ground
water最大值 8.33 8299.30 54.90 2327.00 287.20 354.60 4079.00 1113.00 613.10 ND 3.06 1.12 16.28 最小值 7.89 1874.45 14.60 357.20 145.20 124.40 656.50 437.30 278.50 ND ND 0.64 3.48 平均值 8.17 5376.38 30.08 1422.30 215.18 253.20 2595.38 643.03 434.45 ND 1.47 0.86 10.67 标准差 0.23 2644.35 17.33 811.64 59.93 97.89 1422.76 318.70 149.52 — 1.47 0.22 5.96 深层
地下水
Deep ground
water最大值 7.95 1865.14 9.18 283.40 237.20 132.60 586.50 294.00 676.60 ND ND 0.76 53.24 最小值 7.94 1859.28 8.24 275.40 223.80 127.80 583.00 293.50 663.00 ND ND 0.69 51.56 平均值 7.95 1862.21 8.71 279.40 230.50 130.20 584.75 293.75 669.80 ND ND 0.73 52.40 标准差 0.01 4.14 0.66 5.66 9.48 3.39 2.47 0.35 9.62 — — 0.05 1.19 清水湖
Qingshui
lake地表水
Surface
water泄流前a 9.82 1991.14 16.12 488.70 31.22 155.30 898.09 277.30 116.66 66.08 ND 1.10 4.09 最大值 9.22 15536.65 96.90 5042.00 26.93 536.40 8403.21 885.40 620.94 255.50 2.84 0.84 5.04 最小值 9.09 12627.17 74.32 4087.00 10.17 441.00 6898.00 657.90 369.10 156.00 0.48 0.22 ND 平均值 9.17 13616.82 84.70 4475.00 19.32 480.25 7331.01 752.23 517.22 215.72 1.84 0.54 2.09 标准差 0.06 1337.81 9.38 449.32 6.90 44.39 721.10 100.66 106.63 42.95 1.01 0.25 2.13 海丁诺
尔湖
Haydingnor
lake地表水
Surface
water最大值 8.95 11601.37 72.24 3845.00 24.54 392.00 6162.36 605.50 526.43 236.51 2.04 0.54 3.23 最小值 8.80 10307.48 61.46 3443.00 12.42 344.30 5532.00 480.40 487.00 190.40 1.90 0.48 ND 平均值 8.88 10954.42 66.85 3644.00 18.48 368.15 5847.18 542.95 506.72 213.46 1.97 0.51 1.62 标准差 0.11 914.91 7.62 284.26 8.57 33.73 445.73 88.46 27.88 32.60 0.10 0.04 2.28 浅层
地下水
Sallow ground
water8.60 10631.11 59.15 3389.00 32.81 376.80 5865.00 546.30 516.30 103.90 1.57 0.63 1.88 北一河
Beiyi river地表水
Surface
water最大值 8.45 226.94 3.24 30.07 31.21 17.59 40.62 31.89 139.38 5.77 4.82 0.30 18.39 最小值 8.21 182.49 2.26 20.40 26.93 13.77 30.46 26.15 125.03 ND 4.47 0.27 9.64 平均值 8.38 209.06 2.73 26.08 29.54 15.85 36.53 29.95 132.94 1.92 4.60 0.29 12.62 标准差 0.15 23.47 0.49 5.05 2.29 1.93 5.36 3.29 7.29 3.33 0.19 0.02 5.00 浅层
地下水
Sallow ground
water7.95 306.76 5.16 55.66 26.07 22.14 71.78 49.65 152.60 ND 4.62 0.51 3.69 注:pH无量纲,其余指标单位均为mg·L−1; a代表泄流前样点水化学指标统计值; ND代表未检出. Note: pH is dimensionless, and the other units are mg·L−1; a, statistical values of water sample point before discharge; ND, not detected. 表 2 水化学参数主成分载荷
Table 2. Principal component loadings for chemical parameters
水化学参数
Chemical parameters主成分
Principal componentsPC1 PC2 K+ 0.99 TDS 0.99 Na+ 0.99 Cl- 0.99 Mg2+ 0.98 ${\rm{SO}}_4^{2-} $ 0.87 pH 0.72 H2SiO3 -0.63 0.58 Ca2+ -0.52 0.76 ${\rm{NO}}_3^{-} $ -0.66 ${\rm{HCO}}_3^{-} $ 0.59 0.66 F− 0.60 特征值
Eigenvalue7.31 2.35 方差贡献率/%
Explained variance60.89 19.58 累积方差/%
Cumulative of variance60.89 80.47 注:空值为因子载荷值低于0.4,本次分析中已剔除. Note: The null value is the factor loading value lower than 0.4, which has been eliminated. -
[1] 刘志伟, 李胜男, 张寅生, 等. 青藏高原高寒草原土壤蒸发特征及其影响因素 [J]. 干旱区资源与环境, 2019, 33(9): 87-93. doi: 10.13448/j.cnki.jalre.2019.270 LIU Z W, LI S N, ZHANG Y S, et al. Evaporation characteristics of alpine meadow in Tibetan Plateau and the influencing factors [J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 87-93(in Chinese). doi: 10.13448/j.cnki.jalre.2019.270
[2] 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响 [J]. 中国科学院院刊, 2019, 34(11): 1233-1246. doi: 10.16418/j.issn.1000-3045.2019.11.006 ZHAO L, HU G J, ZOU D F, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet plateau [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246(in Chinese). doi: 10.16418/j.issn.1000-3045.2019.11.006
[3] RAN Y H, LI X, CHENG G D. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau [J]. The Cryosphere, 2018, 12(2): 595-608. doi: 10.5194/tc-12-595-2018 [4] 叶庆华, 程维明, 赵永利, 等. 青藏高原冰川变化遥感监测研究综述 [J]. 地球信息科学学报, 2016, 18(7): 920-930. YE Q H, CHENG W M, ZHAO Y L, et al. A review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies [J]. Journal of Geo-Information Science, 2016, 18(7): 920-930(in Chinese).
[5] LI J L, WANG W, WANG D H, et al. Hydrochemical and stable isotope characteristics of lake water and groundwater in the beiluhe basin, Qinghai–Tibet plateau [J]. Water, 2020, 12(8): 2269. doi: 10.3390/w12082269 [6] QIN Y, LEI H W, YANG D W, et al. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau [J]. Journal of Hydrology, 2016, 542: 204-221. doi: 10.1016/j.jhydrol.2016.09.008 [7] 闫立娟, 郑绵平, 魏乐军. 近40年来青藏高原湖泊变迁及其对气候变化的响应 [J]. 地学前缘, 2016, 23(4): 310-323. doi: 10.13745/j.esf.2016.04.027 YAN L J, ZHENG M P, WEI L J. Change of the lakes in Tibetan Plateau and its response to climate in the past forty years [J]. Earth Science Frontiers, 2016, 23(4): 310-323(in Chinese). doi: 10.13745/j.esf.2016.04.027
[8] 刘宝康, 李林, 杜玉娥, 等. 青藏高原可可西里卓乃湖溃堤成因及其影响分析 [J]. 冰川冻土, 2016, 38(2): 305-311. LIU B K, LI L, DU Y, et al. Causes of the outburst of Zonag Lake in Hoh Xil, Tibetan Plateau, and its impact on surrounding environment [J]. Journal of Glaciology and Geocryology, 2016, 38(2): 305-311(in Chinese).
[9] 董梁. 可可西里地区盐湖下游河道冲刷演变数值模拟研究[D]. 西安: 西安理工大学, 2021. DONG L. Numerical simulation of formation and evolution of river channel downstream of the hoh-xil region[D]. Xi'an: Xi'an University of Technology, 2021(in Chinese).
[10] KAUSHIK H, RAMANATHAN A, SOHEB M, et al. Climate change-induced high-altitude lake: Hydrochemistry and area changes of a moraine-dammed lake in Leh-Ladakh [J]. Acta Geophysica, 2021, 69(6): 2377-2391. doi: 10.1007/s11600-021-00670-x [11] 李承鼎, 康世昌, 刘勇勤, 等. 西藏湖泊水体中主要离子分布特征及其对区域气候变化的响应 [J]. 湖泊科学, 2016, 28(4): 743-754. doi: 10.18307/2016.0407 LI C D, KANG S C, LIU Y Q, et al. Distribution of major ions in waters and their response to regional climatic change in Tibetan lakes [J]. Journal of Lake Sciences, 2016, 28(4): 743-754(in Chinese). doi: 10.18307/2016.0407
[12] WANG Z Y, GAO Z J, WANG S, et al. Hydrochemistry characters and hydrochemical processes under the impact of anthropogenic activity in the Yiyuan City, Northern China [J]. Environmental Earth Sciences, 2021, 80(2): 1-19. [13] KAPHLE B, WANG J B, KAI J L, et al. Hydrochemistry of Rara Lake: A Ramsar Lake from the southern slope of the central Himalayas, Nepal [J]. Journal of Mountain Science, 2021, 18(1): 141-158. doi: 10.1007/s11629-019-5910-0 [14] WALI S U, ALIAS N, HARUN S B. Reevaluating the hydrochemistry of groundwater in basement complex aquifers of Kaduna Basin, NW Nigeria using multivariate statistical analysis [J]. Environmental Earth Sciences, 2021, 80(5): 1-25. [15] 陈强, 冶富寿, 陈育红, 等. 青藏高原可可西里盐湖水量平衡初步分析 [J]. 人民长江, 2020, 51(5): 94-98. doi: 10.16232/j.cnki.1001-4179.2020.05.016 CHEN Q, YE F S, CHEN Y H, et al. Preliminary study on water balance for Salt Lake in Hoh Xil, Tibetan Plateau [J]. Yangtze River, 2020, 51(5): 94-98(in Chinese). doi: 10.16232/j.cnki.1001-4179.2020.05.016
[16] 刘文惠, 谢昌卫, 王武, 等. 青藏高原可可西里盐湖水位上涨趋势及溃决风险分析 [J]. 冰川冻土, 2019, 41(6): 1467-1474. doi: 10.7522/j.issn.1000-0240.2019.0307 LIU W H, XIE C W, WANG W, et al. Analysis on expansion trend and outburst risk of the Yanhu Lake in Hoh Xil region, Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1467-1474(in Chinese). doi: 10.7522/j.issn.1000-0240.2019.0307
[17] 刘勇平, 周敬, 韩凤清, 等. 青海可可西里东部盐湖水化学及沉积特征初步研究 [J]. 盐湖研究, 2009, 17(3): 10-16. LIU Y P, ZHOU J, HAN F Q, et al. Preliminary study of hydrochemistry and sedimentary characteristics of salt lakes in eastern hoh xil region [J]. Journal of Salt Lake Research, 2009, 17(3): 10-16(in Chinese).
[18] 高翔, 彭强, 蔡敏, 等. 可可西里盐湖表层沉积物中粘土矿物的环境信息 [J]. 岩石矿物学杂志, 2012, 31(5): 736-744. doi: 10.3969/j.issn.1000-6524.2012.05.011 GAO X, PENG Q, CAI M, et al. Environmental information of clay minerals in salt lake surface sediments of Hol Xil area [J]. Acta Petrologica et Mineralogica, 2012, 31(5): 736-744(in Chinese). doi: 10.3969/j.issn.1000-6524.2012.05.011
[19] 白宇明, 王训练, 杨立超, 等. 青海可可西里东北部多秀湖和盐湖水化学特征研究 [J]. 盐湖研究, 2018, 26(2): 27-33. BAI Y M, WANG X L, YANG L C, et al. Hydrochemical characteristics of Duoxiu Lake and yanhu lake in northeastern hoh xil region, Qinghai [J]. Journal of Salt Lake Research, 2018, 26(2): 27-33(in Chinese).
[20] 郭彦威, 李颖智, 王秀明, 等. 青藏高原清水河流域水化学特征分析 [J]. 安全与环境工程, 2012, 19(4): 70-73. doi: 10.3969/j.issn.1671-1556.2012.04.017 GUO Y W, LI Y Z, WANG X M, et al. Hydrochemical characteristics of Qingshui River Basin in the Tibetan Plateau [J]. Safety and Environmental Engineering, 2012, 19(4): 70-73(in Chinese). doi: 10.3969/j.issn.1671-1556.2012.04.017
[21] 张丽, 陈永金, 刘加珍, 等. 东平湖水化学特征及成因分析 [J]. 环境化学, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502 ZHANG L, CHEN Y J, LIU J Z, et al. Analysis on hydrochemical characteristics and causes of Dongping Lake [J]. Environmental Chemistry, 2021, 40(5): 1490-1502(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122502
[22] 屈伸, 史浙明, 梁向阳, 等. 大海则井田多层含水层系统水化学特征及演化规律 [J]. 环境化学, 2022, 41(8): 2614-2624. doi: 10.7524/j.issn.0254-6108.2021043003 QU S, SHI Z M, LIANG X Y, et al. Hydrochemical characteristics and evolution of groundwater in multilayer aquifer system in the Dahaize Coalfield [J]. Environmental Chemistry, 2022, 41(8): 2614-2624(in Chinese). doi: 10.7524/j.issn.0254-6108.2021043003
[23] 林永生, 裴建国, 杜毓超, 等. 基于多元统计方法的岩溶地下水化学特征及影响因素分析 [J]. 环境化学, 2016, 35(11): 2394-2401. doi: 10.7524/j.issn.0254-6108.2016.11.2016032801 LIN Y S, PEI J G, DU Y C, et al. Hydrochemical characteristics of Karst groundwater and their influencing factors based on multiple statistical analysis [J]. Environmental Chemistry, 2016, 35(11): 2394-2401(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016032801
[24] XIANG J, ZHOU J J, YANG J C, et al. Applying multivariate statistics for identification of groundwater chemistry and qualities in the Sugan Lake Basin, Northern Qinghai-Tibet Plateau, China [J]. Journal of Mountain Science, 2020, 17(2): 448-463. doi: 10.1007/s11629-019-5660-z [25] 杜丁丁. 中国西部地区湖泊碳库效应的影响因素及评价[D]. 兰州: 兰州大学, 2018. DU D D. The influence factors and evalution of 14C reservoir effects of lakes in the Western China[D]. Lanzhou: Lanzhou University, 2018(in Chinese).
[26] 郑喜玉. 中国盐湖志[M]. 北京: 科学出版社, 2002. ZHENG X Y. China Salt Lake Chronicle [M]. Beijing: Science Press, 2002(in Chinese).
[27] 李颖智, 郭彦威, 耿昕, 等. 青藏高原不冻泉地区地下水分布特征 [J]. 水资源保护, 2013, 29(3): 10-14. doi: 10.3969/j.issn.1004-6933.2013.03.003 LI Y Z, GUO Y W, GENG X, et al. Distribution characteristics of groundwater in non-freezing spring area on Tibetan Plateau [J]. Water Resources Protection, 2013, 29(3): 10-14(in Chinese). doi: 10.3969/j.issn.1004-6933.2013.03.003
[28] 汤欢. 聚类分析的新方法研究[D]. 昆明: 云南师范大学, 2020. TANG H. Research on new methods of clustering analysis[D]. Kunming: Yunnan Normal University, 2020(in Chinese).
[29] YADAV A, NANDA A, SAHU B L, et al. Groundwater hydrochemistry of rajnandgaon district, chhattisgarh, central India [J]. Groundwater for Sustainable Development, 2020, 11: 100352. doi: 10.1016/j.gsd.2020.100352 [30] GAO Z Y, NIU F J, LIN Z J. Effects of permafrost degradation on thermokarst lake hydrochemistry in the Qinghai-Tibet Plateau, China [J]. Hydrological Processes, 2020, 34(26): 5659-5673. doi: 10.1002/hyp.13987 [31] ZHAO G, LI W, LI F, et al. Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibet Plateau [J]. The Science of the Total Environment, 2018, 610/611: 641-650. doi: 10.1016/j.scitotenv.2017.08.088 [32] CEJUDO E, ACOSTA-GONZÁLEZ G, ORTEGA-CAMACHO D, et al. Changes in the hydrochemistry of a karstic lake in yucatan, Mexico [J]. Environmental Earth Sciences, 2020, 79(5): 1-13.