-
难降解有机物是废水中难以在自然条件下被生物逐级降解的有机污染物. 由于其难降解性,在水环境中的大量滞留,大部分难降解有机物具有高毒性,不仅对水环境造成了严重的危害,甚至威胁到了人类的健康. 随着工业化和经济的迅速增长,近年来难降解有机物在废水中的浓度越来越高,高浓度有机废水中难降解有机物的浓度甚至已经达到了2000—20000 mg·L−1[1]. 我国难降解有机物主要来源于工业废水,如印染废水、造纸废水、食品行业废水、农药废水和制药工业废水[2]. CWAO和CWPO被认为是目前处理难降解有机污染物最有效的方法. 本文综述了CWAO和CWPO降解有机物的原理和进展,分析了催化剂对常规湿式氧化反应过程的加速和降解效率的影响,并提出了未来难降解有机物可能的发展方向.
催化湿式氧化/过氧化法处理难降解有机物的研究进展
Research progress of catalytic wet oxidation/peroxidation treatment of refractory organics
-
摘要: 常规的水处理工艺成熟,运行成本低,但其对难降解有机物的处理效果差,难以满足日益严格的排放标准. 本文将催化湿式氧化法(CWAO)与催化湿式过氧化氢氧化法(CWPO)合称为催化湿式氧化/过氧化法,两者都具有效率高、占地少的显著特征,可以直接把难降解有机物分解为二氧化碳和水,已成为新的研究热点. 本文综述了催化湿式氧化/过氧化法降解有机物的原理和进展,分析了催化剂对常规湿式氧化/过氧化反应过程的加速和降解效率的影响,讨论了催化湿式氧化/过氧化技术存在的主要制约瓶颈,提出了有机物的定向调控转化和资源化是今后减污降碳的主要方向.
-
关键词:
- 催化湿式氧化 /
- 催化湿式过氧化氢氧化 /
- 难降解有机物 /
- 催化剂
Abstract: The conventional water treatment process is mature with low operating cost, but its treatment effect on refractory organics are poor, and it is difficult to meet the increasingly stringent emission standards. In this review, catalytic wet oxidation (CWAO) and catalytic wet hydrogen peroxide oxidation (CWPO) are collectively referred to as catalytic wet oxidation/peroxidation, both of which have the remarkable features of high efficiency and small land occupation, and refractory organics are directly decomposed into carbon dioxide and water by catalytic wet oxidation/peroxidation. Then the method has become a new research hotspot. The principles and progress of catalytic wet oxidation/peroxidation for degradation organic pollutants are reviewed, the effect of catalysts on the acceleration and degradation efficiency of common wet oxidation/peroxidation reaction processes are analyzed, and the main restrictive bottlenecks of catalytic wet oxidation/peroxidation technology are discussed. It is proposed that the directional regulation, transformation and resource utilization of organics will be the main directions of pollution reduction and carbon reduction in the future. -
图 2 双酚A转换随时间的函数[57]
Figure 2. Bisphenol A conversion as a function of time
表 1 常温水和超临界水的性质比较
Table 1. Comparison of properties between constant temperature water and supercritical water
性质
Property常温水
Constant temperature water超临界水
Supercritical water温度/℃ 25 450 压力/MPa 0.1 27 密度/(g·cm−3) 0.998 0.128 介电常数 78.5 1.8 黏度/cp 0.890 0.0298 扩散系数/(cm2·s−1) 7.74×10−6 7.76×10−4 离子积 10-14 10-22 表 2 铁基催化剂用于降解有机污染物研究
Table 2. Research on iron-based catalyst for degradation of organic pollutants
难降解有机物
Refractory
organic
matter催化剂
Catalyst制备方法
Preparation比表面积/
(m2∙g−1)
Specific
surface
area氧化剂
OxidizerCOD
去除率/%
COD
removal
rateTOC
去除率/%
TOD
removal
rate铁浸出浓度/
(mg ∙L−1)
Iron leaching
concentration底物浓度/
(mg ∙L−1)
Substrate
concentration参考文献
References苯酚 Fe-ZSM-5 湿浸渍法 225.5 H2O2 99.2 77.7 1.9 1000 [15] 间甲苯酚 Fe2O3-ZSM-5 气相沉积法 251.7 H2O2 99 80.5 1.1 1000 [16] 苯甲酸 Fe3O4@CeO2 溶剂热法 104.9 H2O2 80 48 4.2 50 [17] 苯酚 3D Fe/SiC 3D打印法 23.5 H2O2 100 60 8.3 1000 [18] 苯酚 Al/Fe-PILCs 超声浸渍法 200 O2 100 80 0.7 1000 [19] 2,4,6-三氯酚 铁基碳氧凝胶 浸渍法 510 O2 74.49 24.31 0.091 1600 [20] 草甘膦 Fe-SBA(20) 凝胶法 705 O2 80 N/A N/A 15 [21] 香草酸 Fe/TS-1 湿浸渍法 N/A H2O2 100 N/A N/A 10000 [22] 苯酚 Fe3C@NCNT/PSSF 气相沉积法 15 H2O2 92 41 N/A 1000 [23] 甲酚 Fe/ZSM 浸渍法 574.9 H2O2 90.7 24 0.12 100 [24] 甲硝唑 Fe/Al2O3 微波浸渍法 0.11 H2O2 73 N/A 0.1 0.1 [25] 磺胺甲恶唑 Fe/SiC 微波浸渍法 0.23 H2O2 83 N/A 0.27 0.1 [25] 卡马西平 Fe/ZrO2 微波浸渍法 0.35 H2O2 90 N/A 0.35 0.1 [25] P-4B染料 Al/Fe-PILCs 气相沉积法 201 H2O2 99.24 58.13 0.24 100 [26] 扑热息痛 铁碳干凝胶(RFFeC) 熔融-凝胶法 263 H2O2 99 60 0.2 50 [27] 苯酚 Al-Ce-Fe NaOH激活+
热处理121.8 H2O2 100 54 0.25 1000 [28] 乙二胺四乙酸 Fe-MCM-41 浸渍法 937 H2O2 100 50 0.2 5845 [29] N/A,无法获得的. N/A,Not available. 表 3 铜基催化剂用于降解有机污染物研究
Table 3. study on copper based catalyst for degradation of organic pollutants
难降解有机物
Refractory
organic
matter催化剂
Catalyst制备方法
PreparationBET比表面积/
(m2∙g−1)
Specific
surface
area铜负载率/%
Copper
load rate氧化剂
OxidizerCOD
去除率/%
COD
removal
rateTOC
去除率/%
TOD
removal
rate铜浸出浓度/
(mg ∙L−1)
Copper
leaching
concentration底物浓度/
(mg ∙L−1)
Substrate
concentration参考文献
References喹啉 Cu/沸石Y 水离子交换法、湿浸渍法 909 5.03 H2O2 100 65.4 6 1100 [41] 制药污泥 Cu/Ce 共沉淀法 N/A N/A O2 80 N/A 5 18000 [42] ETBE和TAME CuO/γ-Al2O3 溶胶凝胶法 449 16.9 O2 100 74 0 N/A [43] 苯酚 Cu3-Al-500 共沉淀法 22.8 O2 99 N/A 10.3 2100 [44] 氯酚 CeCu 湿浸渍法 63.4 4.46 H2O2 99.5 82 2.46 50 [45] 苯酚 Cu-ZSM-5 离子交换法 165 1.91 H2O2 98 78 7.2 1000 [46] 4-氯苯酚 Zn-CNTs-Cu 渗透熔融化学置换法 N/A N/A H2O2 100 68 N/A 1000 [47] 咖啡因 CuNi-YC 湿浸渍法 57.81 N/A H2O2 86.16 68.85 2.05 40 [48] N/A,无法获得的. N/A,Not available. 表 4 稀有金属催化剂用于降解有机污染物研究
Table 4. Research on rare metal catalysts for degradation of organic pollutants
难降解
有机物
Refractory
organic matter催化剂
Catalyst制备方法
Preparation比表面积/
(m2∙g−1)
Specific
surface
area金属
负载率/%
Metal
loading rate氧化剂
OxidizerCOD去除率/%
COD removal
rateTOC去除率/%
TOD removal
rate底物浓度/
(mg ∙L−1)
Substrate
concentration参考文献
References活性黑5 LaNiO3 溶胶-凝胶柠檬酸法 N/A 1 O2 65.4 33 100 [55] 腐殖质 NiCo2O4 溶剂热法 66.88 Ni/Co=1:2.06 O2 100 90 25000 [56] 双酚A Ru/ZrO2 溶胶-凝胶和浸渍法 80 3 O2 97 N/A 10 [57] 腐殖酸 Mo/Al2O3 原位水热法、煅烧法 N/A 1.39 O2 100 60 20 [58] 罗丹明6G La/CoFe2O4 溶胶自燃法 3.38 1.15 H2O2 91.6 40 10 [59] Gd/CoFe2O4 2.69 1.08 92.8 27 10 Dy/CoFe2O4 2.51 1.07 91.7 35 10 苯酚 Mn/Ce 共沉淀法 160 Mn/Ce=6/4 O2 100 94 1000 [60] 偶氮染料 Ce2O3-Fe2O3/-Al2O3 浸渍法 193.6 0.39 H2O2 88.77 81.44 500 [61] N/A,无法获得的. N/A,Not available. 表 5 Rh6G染料CWPO降解的颜色/TOC去除数据和动力学参数[59]
Table 5. Color/TOC removal data and kinetic parameters of Rh6G dye CWPO degradation[59]
催化剂
Catalyst颜色去除率/%
Color removal rateTOC去除率/%
TOC removal rateC 35.7 17 C-La 91.6 40 C-Gd 92.8 27 C-Dy 91.7 35 表 6 非金属催化剂用于降解有机污染物的研究
Table 6. research on non-metallic catalysts for degradation of organic pollutants
难降解有机物
Refractory
organic
matter催化剂
Catalyst制备方法
Preparation比表面积/
(m2∙g−1)
Specific
surface
area催化剂
含量/%
Catalyst
content氧化剂
OxidizerCOD
去除率/%
COD
removal
rateTOC
去除率/%
TOD
removal
rate底物浓度/
(mg∙L−1)
Substrate
concentration参考文献
References布洛芬 石墨粉 商用 12 97.2 H2O2 100 53 20 μmol∙L−1 [72] 双氯芬酸 100 74 20 μmol∙L−1 苯酚 单层石墨烯薄膜 化学气相沉积法 0.6685 N/A H2O2 100 91 1000 [73] 氮掺杂炭 高温氨化 1305 87.1 O2 100 N/A 1000 [74] 活性炭 商用 1019 89.3 H2O2 97 70 5000 [75] 扑热息痛 椰子壳活性炭 炭化法 1180 92.3 O2 95 60 2000 [76] 木材活性炭 1860 71.1 89 41 2000 木麻黄活性炭 1230 86.5 98 62 2000 N/A,无法获得的. N/A,Not available. -
[1] ZHANG H H, LIN H, LI Q, et al. Removal of refractory organics in wastewater by coagulation/flocculation with green chlorine-free coagulants [J]. Science of the Total Environment, 2021, 787: 147654. doi: 10.1016/j.scitotenv.2021.147654 [2] LIU Y Y, SUN Y Q, WAN Z H, et al. Tailored design of food waste hydrochar for efficient adsorption and catalytic degradation of refractory organic contaminant [J]. Journal of Cleaner Production, 2021, 310: 127482. doi: 10.1016/j.jclepro.2021.127482 [3] SAVAGE P E. Organic chemical reactions in supercritical water [J]. Chemical Reviews, 1999, 99(2): 603-622. doi: 10.1021/cr9700989 [4] TOPP A, SCHMIEDEL K, SCHAEFFER G. Wet oxidation[M]. US, US4145283 A[P]. [5] FOG K. The effect of added nitrogen on the rate of decomposition of organic matter [J]. Biological Reviews, 1988, 63(3): 433-462. doi: 10.1111/j.1469-185X.1988.tb00725.x [6] JOCHIMSEN J C, JEKEL M R. Partial oxidation effects during the combined oxidative and biological treatment of separated streams of tannery wastewater [J]. Water Science and Technology, 1997, 35(4): 337-345. doi: 10.2166/wst.1997.0149 [7] WARD C P, CORY R M. Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils [J]. Environmental Science & Technology, 2016, 50(7): 3545-3553. [8] KIM K H, IHM S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review [J]. Journal of Hazardous Materials, 2011, 186(1): 16-34. doi: 10.1016/j.jhazmat.2010.11.011 [9] 杨少霞, 冯玉杰, 万家峰, 等. 湿式催化氧化技术的研究与发展概况 [J]. 哈尔滨工业大学学报, 2002, 34(4): 540-544. doi: 10.3321/j.issn:0367-6234.2002.04.024 YANG S X, FENG Y J, WAN J F, et al. Catalytic wet air oxidation [J]. Journal of Harbin Institute of Technology, 2002, 34(4): 540-544(in Chinese). doi: 10.3321/j.issn:0367-6234.2002.04.024
[10] CATRINESCU C, TEODOSIU C, MACOVEANU M, et al. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite [J]. Water Research, 2003, 37(5): 1154-1160. doi: 10.1016/S0043-1354(02)00449-9 [11] TEHRANI-BAGHA A R, BALCHI T. Catalytic wet peroxide oxidation[M]//Advanced Oxidation Processes for Waste Water Treatment. Amsterdam: Elsevier, 2018: 375-402. [12] LEFÈVRE M, PROIETTI E, JAOUEN F, et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells [J]. Science, 2009, 324(5923): 71-74. doi: 10.1126/science.1170051 [13] LI X, WANG J K, ZHANG X, et al. A high-efficient carbon-coated iron-based Fenton-like catalyst with enhanced cycle stability and regenerative performance [J]. Catalysts, 2020, 10(12): 1486. doi: 10.3390/catal10121486 [14] RUPPERT G, BAUER R, HEISLER G. The photo-Fenton reaction—an effective photochemical wastewater treatment process [J]. Journal of Photochemistry and Photobiology A:Chemistry, 1993, 73(1): 75-78. doi: 10.1016/1010-6030(93)80035-8 [15] YAN Y, JIANG S S, ZHANG H P. Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor [J]. Separation and Purification Technology, 2014, 133: 365-374. doi: 10.1016/j.seppur.2014.07.014 [16] YANG Y, ZHANG H P, YAN Y. The preparation of Fe2 O3-ZSM-5 catalysts by metal-organic chemical vapour deposition method for catalytic wet peroxide oxidation of m-cresol [J]. Royal Society Open Science, 2018, 5(3): 171731. doi: 10.1098/rsos.171731 [17] QIN H D, XIAO R, SHI W, et al. Magnetic core–shell-structured Fe3O4@CeO2 as an efficient catalyst for catalytic wet peroxide oxidation of benzoic acid [J]. RSC Advances, 2018, 8(59): 33972-33979. doi: 10.1039/C8RA07144F [18] QUINTANILLA A, CASAS J A, MIRANZO P, et al. 3D-Printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes [J]. Applied Catalysis B:Environmental, 2018, 235: 246-255. doi: 10.1016/j.apcatb.2018.04.066 [19] MOMA J, BALOYI J, NTHO T. Synthesis and characterization of an efficient and stable Al/Fe pillared clay catalyst for the catalytic wet air oxidation of phenol [J]. RSC Advances, 2018, 8(53): 30115-30124. doi: 10.1039/C8RA05825C [20] KUMARI M, SAROHA A K. Synthesis and characterization of carbon xerogel based iron catalyst for use in wet air oxidation of aqueous solution containing 2, 4, 6-trichlorophenol [J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103121. doi: 10.1016/j.jece.2019.103121 [21] VASCHETTO E G, SICARDI M I, ELÍAS V R, et al. Metal modified silica for catalytic wet air oxidation (CWAO) of glyphosate under atmospheric conditions [J]. Adsorption, 2019, 25(7): 1299-1306. doi: 10.1007/s10450-019-00090-w [22] VEGA-AGUILAR C A, BARREIRO M F, RODRIGUES A E. Catalytic wet peroxide oxidation of vanillic acid as a lignin model compound towards the renewable production of dicarboxylic acids [J]. Chemical Engineering Research and Design, 2020, 159: 115-124. doi: 10.1016/j.cherd.2020.04.021 [23] HUANG H X, ZHANG H P, YAN Y. Preparation of novel catalyst-free Fe3C nanocrystals encapsulated NCNT structured catalyst for continuous catalytic wet peroxide oxidation of phenol [J]. Journal of Hazardous Materials, 2021, 407: 124371. doi: 10.1016/j.jhazmat.2020.124371 [24] CHEN L L, SUN W J, WEI H Z, et al. Developing Fe/zeolite catalysts for efficient catalytic wet peroxidation of three isomeric cresols [J]. Environmental Science and Pollution Research International, 2021, 28(31): 42622-42636. doi: 10.1007/s11356-021-13336-4 [25] NIETO-SANDOVAL J, di LUCA C, GOMEZ-HERRERO E, et al. Innovative iron oxide foams for the removal of micropollutants by Catalytic Wet Peroxide Oxidation: Assessment of long-term operation under continuous mode [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105914. doi: 10.1016/j.jece.2021.105914 [26] KıPÇAK İ, KURTARAN ERSAL E. Catalytic wet peroxide oxidation of a real textile azo dye Cibacron Red P-4B over Al/Fe pillared bentonite catalysts: Kinetic and thermodynamic studies [J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132(2): 1003-1023. doi: 10.1007/s11144-021-01962-5 [27] CARRASCO-DÍAZ M R, CASTILLEJOS-LÓPEZ E, CERPA-NARANJO A, et al. On the textural and crystalline properties of Fe-carbon xerogels. Application as Fenton-like catalysts in the oxidation of paracetamol by H2O2 [J]. Microporous and Mesoporous Materials, 2017, 237: 282-293. doi: 10.1016/j.micromeso.2016.09.035 [28] CARRIAZO J, GUÉLOU E, BARRAULT J, et al. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe [J]. Water Research, 2005, 39(16): 3891-3899. doi: 10.1016/j.watres.2005.06.034 [29] GOKULAKRISHNAN N, PANDURANGAN A, SINHA P K. Catalytic wet peroxide oxidation technique for the removal of decontaminating agents ethylenediaminetetraacetic acid and oxalic acid from aqueous solution using efficient Fenton type Fe-MCM-41 mesoporous materials [J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1556-1561. [30] SCHERES FIRAK D, ROCHA RIBEIRO R, LIZ M V, et al. Investigations on iron leaching from oxides and its relevance for radical generation during Fenton-like catalysis [J]. Environmental Earth Sciences, 2018, 77(4): 1-9. [31] 周维华, 李振溱, 段猛, 等. 钒渣浸出液中络合除铁的研究 [J]. 钢铁钒钛, 2016, 37(5): 20-24,34. doi: 10.7513/j.issn.1004-7638.2016.05.004 ZHOU W H, LI Z Q, DUAN M, et al. Removal of iron from acid leaching solution of vanadium slag by complexation [J]. Iron Steel Vanadium Titanium, 2016, 37(5): 20-24,34(in Chinese). doi: 10.7513/j.issn.1004-7638.2016.05.004
[32] RAMÍREZ H, NÚÑEZ M, BOGOYA A B, et al. Synthesis of coal fly ash zeolite for the catalytic wet peroxide oxidation of Orange II [J]. Environmental Science and Pollution Research International, 2019, 26(5): 4277-4287. doi: 10.1007/s11356-018-3315-1 [33] BERKÜN OLGUN Ö, PALAS B, ATALAY S, et al. Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts [J]. Chemical Engineering Research and Design, 2021, 171: 421-432. doi: 10.1016/j.cherd.2021.05.017 [34] HU B S, YAMAGUCHI Y, FUJIMOTO K. Low temperature methanol synthesis in alcohol solvent over copper-based catalyst [J]. Catalysis Communications, 2009, 10(12): 1620-1624. doi: 10.1016/j.catcom.2009.02.016 [35] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054 [36] HU B S, FUJIMOTO K. Promoting behaviors of alkali compounds in low temperature methanol synthesis over copper-based catalyst [J]. Applied Catalysis B:Environmental, 2010, 95(3/4): 208-216. [37] 黄园英, 刘菲, 汤鸣皋, 等. 纳米镍/铁对四氯乙烯快速脱氯试验 [J]. 岩矿测试, 2005, 24(2): 93-96,101. doi: 10.3969/j.issn.0254-5357.2005.02.003 HUANG Y Y, LIU F, TANG M G, et al. Rapid reduction of tetrachloroethene using nano-scale Ni/Fe bimetallic particles [J]. Rock and Mineral Analysis, 2005, 24(2): 93-96,101(in Chinese). doi: 10.3969/j.issn.0254-5357.2005.02.003
[38] MARIÑO F, BOVERI M, BARONETTI G, et al. Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts. Effect of Ni [J]. International Journal of Hydrogen Energy, 2001, 26(7): 665-668. doi: 10.1016/S0360-3199(01)00002-7 [39] QU Z P, WANG Z, ZHANG X Y, et al. Role of different coordinated Cu and reactive oxygen species on the highly active Cu–Ce–Zr mixed oxides in NH3-SCO: A combined in situ EPR and O2-TPD approach [J]. Catalysis Science & Technology, 2016, 6(12): 4491-4502. [40] CHUANG K H, SHIH K, WEY M Y. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance [J]. Journal of Nanoparticle Research, 2012, 14(10): 1-8. [41] SINGH L, REKHA P, CHAND S. Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor [J]. Journal of Environmental Management, 2018, 215: 1-12. [42] ZENG X, LIU J, ZHAO J F. Catalytic wet oxidation of pharmaceutical sludge by molecular sieve loaded with Cu/Ce [J]. Catalysts, 2018, 8(2): 67. doi: 10.3390/catal8020067 [43] SÁNCHEZ-TRINIDAD C, DEL ANGEL G, TORRES-TORRES G, et al. Effect of the CuAl2O4 and CuAlO2 phases in catalytic wet air oxidation of ETBE and TAME using CuO/γ-Al2O3 catalysts [J]. ChemistryOpen, 2019, 8(8): 1143-1150. doi: 10.1002/open.201900080 [44] LAI C J, HE T Q, LI X W, et al. Catalytic wet air oxidation of phenols over porous plate Cu-based catalysts [J]. Applied Clay Science, 2019, 181: 105253. doi: 10.1016/j.clay.2019.105253 [45] XIE H M, ZENG J, ZHOU G L. CeCu composite oxide for chlorophenol effective removal by heterogeneous catalytic wet peroxide oxidation [J]. Environmental Science and Pollution Research International, 2020, 27(1): 846-860. doi: 10.1007/s11356-019-07042-5 [46] WU Y J, ZHANG H P, YAN Y. Effect of copper ion-exchange on catalytic wet peroxide oxidation of phenol over ZSM-5 membrane [J]. Journal of Environmental Management, 2020, 270: 110907. doi: 10.1016/j.jenvman.2020.110907 [47] FU T, GONG X B, GUO J R, et al. Zn-CNTs-Cu catalytic in situ generation of H2O2 for efficient catalytic wet peroxide oxidation of high-concentration 4-chlorophenol [J]. Journal of Hazardous Materials, 2021, 401: 123392. doi: 10.1016/j.jhazmat.2020.123392 [48] ASSILA O, ZOUHEIR M, TANJI K, et al. Copper nickel co-impregnation of Moroccan yellow clay as promising catalysts for the catalytic wet peroxide oxidation of caffeine [J]. Heliyon, 2021, 7(1): e06069. doi: 10.1016/j.heliyon.2021.e06069 [49] 白金, 丁力, 刘鑫尧, 等. 原位合成CuO/ZnO-Al2O3水滑石衍生催化剂催化湿式空气氧化苯酚 [J]. 环境科学学报, 2018, 38(6): 2360-2366. BAI J, DING L, LIU X Y, et al. In-situ systhesis of CuO/ZnO-Al2O3 catalysts derived from hydrotalcite precursor for catalytic wet air oxidation of phenolic [J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2360-2366(in Chinese).
[50] 杨韶平. 湿式氧化催化剂的研制及其在糖蜜酒精废水处理中的应用[D]. 桂林: 广西师范大学, 2005. YANG S P. Study on catalyst of catalytic wet air oxidation and on the treatment of molasses alcohol wastewater[D]. Guilin: Guangxi Normal University, 2005(in Chinese).
[51] 许银. Mo-Zn-Al-O催化剂研制和和湿式氧化处理染料废水[D]. 北京: 北京林业大学, 2012. XU Y. Preparation of Mo-Zn-Al-O catalyst and wet air oxidation of dye wasterwater[D]. Beijing: Beijing Forestry University, 2012(in Chinese).
[52] SANABRIA N R, PERALTA Y M, MONTAÑEZ M K, et al. Catalytic oxidation with Al–Ce–Fe–PILC as a post-treatment system for coffee wet processing wastewater [J]. Water Science and Technology, 2012, 66(8): 1663-1668. doi: 10.2166/wst.2012.410 [53] BALCI S. Structural property improvements of bentonite with sulfuric acid activation and a test in catalytic wet peroxide oxidation of phenol [J]. International Journal of Chemical Reactor Engineering, 2019, 17(6): 167. [54] ZHANG Z, JIANG Y, ZHANG K, et al. DMAO-activated rare-earth metal catalysts for styrene and its derivative polymerization [J]. Chinese Journal of Polymer Science, 2021, 39(9): 1185-1190. doi: 10.1007/s10118-021-2583-2 [55] PALAS B, ERSÖZ G, ATALAY S. Catalytic wet air oxidation of Reactive Black 5 in the presence of LaNiO3 perovskite catalyst as a green process for azo dye removal [J]. Chemosphere, 2018, 209: 823-830. doi: 10.1016/j.chemosphere.2018.06.151 [56] JING Q, LI H. Hierarchical nickel cobalt oxide spinel microspheres catalyze mineralization of humic substances during wet air oxidation at atmospheric pressure [J]. Applied Catalysis B:Environmental, 2019, 256: 117858. doi: 10.1016/j.apcatb.2019.117858 [57] BENSOUILAH R, HAMMEDI T, OUAKOUAK A, et al. Comparative study of the efficiency of different noble metals supported on zirconium oxide in the catalytic wet air oxidation of bisphenol-A solution [J]. Chemical Physics Letters, 2020, 761: 138022. doi: 10.1016/j.cplett.2020.138022 [58] BAO Y P, LEE W J, WANG P H, et al. A novel molybdenum-based nanocrystal decorated ceramic membrane for organics degradation via catalytic wet air oxidation (CWAO) at ambient conditions [J]. Catalysis Today, 2021, 364: 276-284. doi: 10.1016/j.cattod.2020.02.008 [59] SAMOILA P, COJOCARU C, MAHU E, et al. Boosting catalytic wet-peroxide-oxidation performances of cobalt ferrite by doping with lanthanides for organic pollutants degradation [J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104961. doi: 10.1016/j.jece.2020.104961 [60] CHEN H Y, SAYARI A, ADNOT A, et al. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation [J]. Applied Catalysis B:Environmental, 2001, 32(3): 195-204. doi: 10.1016/S0926-3373(01)00136-9 [61] LIU Y, SUN D Z. Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes [J]. Journal of Hazardous Materials, 2007, 143(1/2): 448-454. [62] DAVIES D, GOLUNSKI S, JOHNSTON P, et al. Dominant effect of support wettability on the reaction pathway for catalytic wet air oxidation over Pt and Ru nanoparticle catalysts [J]. ACS Catalysis, 2018, 8(4): 2730-2734. doi: 10.1021/acscatal.7b04039 [63] ACERBI N, GOLUNSKI S, TSANG S C, et al. Promotion of ceria catalysts by precious metals: Changes in nature of the interaction under reducing and oxidizing conditions [J]. The Journal of Physical Chemistry C, 2012, 116(25): 13569-13583. doi: 10.1021/jp212233u [64] SICWETSHA S, ADENIYI O, MASHAZI P. Bimetallic gold and palladium nanoparticles supported on copper oxide nanorods for enhanced H2O2 catalytic reduction and sensing [J]. RSC Advances, 2021, 11(46): 28818-28828. doi: 10.1039/D1RA05247K [65] YAO Y J, CAI Y M, WU G D, et al. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-Like reaction in water [J]. Journal of Hazardous Materials, 2015, 296: 128-137. doi: 10.1016/j.jhazmat.2015.04.014 [66] WU Q, HU X J, YUE P L. Kinetics study on heterogeneous catalytic wet air oxidation of phenol using copper/activated carbon catalyst [J]. International Journal of Chemical Reactor Engineering, 2005, 3(1): 1-13. [67] BARGE A S, VAIDYA P D. Wet air oxidation of cresylic spent caustic - A model compound study over graphene oxide (GO) and ruthenium/GO catalysts [J]. Journal of Environmental Management, 2018, 212: 479-489. doi: 10.1016/j.jenvman.2018.01.066 [68] DHAOUADI A, ADHOUM N. Heterogeneous catalytic wet peroxide oxidation of paraquat in the presence of modified activated carbon [J]. Applied Catalysis B:Environmental, 2010, 97(1/2): 227-235. [69] TARAN O, POLYANSKAYA E, OGORODNIKOVA O, et al. Influence of the morphology and the surface chemistry of carbons on their catalytic performances in the catalytic wet peroxide oxidation of organic contaminants [J]. Applied Catalysis A:General, 2010, 387(1/2): 55-66. [70] LÜCKING F, KÖSER H, JANK M, et al. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution [J]. Water Research, 1998, 32(9): 2607-2614. doi: 10.1016/S0043-1354(98)00016-5 [71] MASSA P, DAFINOV A, CABELLO F M, et al. Catalytic wet peroxide oxidation of phenolic solutions over Fe2O3/CeO2 and WO3/CeO2 catalyst systems [J]. Catalysis Communications, 2008, 9(7): 1533-1538. doi: 10.1016/j.catcom.2007.12.025 [72] GARCIA-COSTA A L, SILVEIRA J E, ZAZO J A, et al. Graphite as catalyst for UV-A LED assisted catalytic wet peroxide oxidation of ibuprofen and diclofenac [J]. Chemical Engineering Journal Advances, 2021, 6: 100090. doi: 10.1016/j.ceja.2021.100090 [73] LIU F Y, ZHANG H P, YAN Y, et al. Graphene as efficient and robust catalysts for catalytic wet peroxide oxidation of phenol in a continuous fixed-bed reactor [J]. Science of the Total Environment, 2020, 701: 134772. doi: 10.1016/j.scitotenv.2019.134772 [74] TEWS I, GARCIA A, AYIANIA M, et al. Nitrogen-doped char as a catalyst for wet oxidation of phenol-contaminated water [J]. Biomass Conversion and Biorefinery, 2021: 1-15. [75] DOMÍNGUEZ C M, OCÓN P, QUINTANILLA A, et al. Highly efficient application of activated carbon as catalyst for wet peroxide oxidation [J]. Applied Catalysis B:Environmental, 2013, 140/141: 663-670. doi: 10.1016/j.apcatb.2013.04.068 [76] QUESADA-PEÑATE I, JULCOUR-LEBIGUE C, JÁUREGUI-HAZA U J, et al. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons [J]. Journal of Hazardous Materials, 2012, 221/222: 131-138. doi: 10.1016/j.jhazmat.2012.04.021 [77] ZHANG S Y, HAN Y Z, WANG L, et al. Treatment of hypersaline industrial wastewater from salicylaldehyde production by heterogeneous catalytic wet peroxide oxidation on commercial activated carbon [J]. Chemical Engineering Journal, 2014, 252: 141-149. doi: 10.1016/j.cej.2014.04.084 [78] BACARDIT J, STÖTZNER J, CHAMARRO E, et al. Effect of salinity on the photo-Fenton process [J]. Industrial & Engineering Chemistry Research, 2007, 46(23): 7615-7619. [79] KAN E, HULING S G. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon [J]. Environmental Science & Technology, 2009, 43(5): 1493-1499. [80] YADAV A, TEJA A K, VERMA N. Removal of phenol from water by catalytic wet air oxidation using carbon bead - supported iron nanoparticle - containing carbon nanofibers in an especially configured reactor [J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 1504-1513. doi: 10.1016/j.jece.2016.02.021 [81] GUPTA P, VERMA N. Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads [J]. Chemical Engineering Journal, 2021, 417: 128029. doi: 10.1016/j.cej.2020.128029 [82] CHENG X, GUO H G, ZHANG Y L, et al. Oxidation of 2, 4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes [J]. Journal of Colloid and Interface Science, 2016, 469: 277-286. doi: 10.1016/j.jcis.2016.01.067 [83] DU J K, BAO J G, FU X Y, et al. Mesoporous sulfur-modified iron oxide as an effective Fenton-like catalyst for degradation of bisphenol A [J]. Applied Catalysis B:Environmental, 2016, 184: 132-141. doi: 10.1016/j.apcatb.2015.11.015 [84] WANG C, YANG Q Q, LI Z H, et al. A novel carbon-coated Fe-C/N composite as a highly active heterogeneous catalyst for the degradation of Acid Red 73 by persulfate [J]. Separation and Purification Technology, 2019, 213: 447-455. doi: 10.1016/j.seppur.2018.12.072 [85] YANG G, MO S, XING B, et al. Effective degradation of phenol via catalytic wet peroxide oxidation over N, S, and Fe-tridoped activated carbon [J]. Environmental Pollution, 2020, 258: 113687. doi: 10.1016/j.envpol.2019.113687 [86] YOO J M, PARK B, KIM S J, et al. Catalytic degradation of phenols by recyclable CVD graphene films [J]. Nanoscale, 2018, 10(13): 5840-5844. doi: 10.1039/C8NR00045J