-
渤海是我国唯一的半封闭性内海,具有优越的地理位置和丰富的自然资源,在我国经济、军事、社会发展等方面都具有重要的战略地位. 进入21世纪以来,环渤海区域社会经济持续高速发展,污染物排海总量居高不下,使渤海水质不断恶化,亟需对生态环境进行综合治理,重金属污染治理是对渤海生态环境治理的重要一环.
目前,对于渤海湾地区的重金属污染中,研究较多的重金属有铜、镉、铅、锌等,其中锌的浓度显著高于其它重金属,曾有研究者检测到渤海湾地区沉积物中锌的平均浓度是铜的3倍、铅的4倍左右[1]. 虽然锌是生物体生长发育所必需的一种微量元素,但是当其在环境中的浓度过高时,就会对环境中的生物体产生毒性,对生态系统的健康产生威胁[2-3],因此锌也是一种很常见的重金属污染物. 然而对于渤海湾地区锌污染的研究目前主要集中于沉积物环境[4-5],对于海水中的重金属污染以及锌的海水水生生物水质基准的研究较少.
水质基准对于水体污染状况的有效评价具有重要意义,是水环境质量管理和污染控制的一项基础性工作[6]. 自上世纪60年代以来,美国、加拿大、澳大利亚、欧盟等已经对水质基准进行了大量的研究,形成了完整的水质基准指定体系,并颁布了自己的环境水质基准文件,其中规定了一些典型污染物的淡水、海水水质基准值[7]. 由美国建立的双值基准体系已经得到全世界的广泛应用. 印度[8]、韩国[9]等国家则起步较晚,近年来有学者推导了其砷、镉、铅等重金属的水质基准值. 我国在1997年公布了国家标准海水水质标准,不同于海水水生生物水质基准,它将海域分为4类水并分别规定了锌浓度限值[10],直到2017年才颁布了淡水水生生物水质基准制定技术指南[11]. 目前已有的水质基准研究较多是针对淡水环境,对于海水环境的研究较少. 我国已有的海水水质基准研究比较零散,包括重金属镉[12]、汞[13]、铅[14]等,有机污染物硝基苯[15]、三氯生[16]以及一些营养盐[17]的海水水质基准值. 水质基准值也会受到环境因素的影响,有研究推导了锌的淡水水质基准并发现其随水体硬度的升高而降低[18],但是对锌的海水水质基准还没有具体研究. 本研究参考已有的水质基准推导方法,根据收集到的对渤海湾本地物种的毒性数据,推导了适用于渤海湾地区的锌长期和短期海水水质基准,并对渤海湾地区的锌潜在生态风险进行了评价,填补了我国海水水质基准研究领域的部分空白,为渤海湾及其邻近海域的区域化精细管理提供了理论依据.
渤海湾锌海水水质基准推导及潜在生态风险评价
Derivation of seawater quality criteria and potential ecological risk assessment of zinc in Bohai Bay
-
摘要: 渤海湾地处我国经济最发达的地区之一,由于流域污染负荷排放超过环境承载力,水生态系统和功能受到不同程度的破坏. 海水水质基准是制定海洋水质标准与科学保护海洋环境的基础,但目前我国海水水质基准的研究较为匮乏. 本研究采用物种敏感度分布曲线法,利用甄选获得的文献数据和毒理试验获得的试验数据,推导了渤海湾重金属锌的海水水质基准. 其中短期水质基准为112.40 μg∙L−1,长期水质基准为16.15 μg∙L−1. 同时,在2020年夏季和秋季分别对渤海湾及其临近海域的水体锌污染状况进行了监测,基于熵值法对渤海湾及其临近海域进行了锌的潜在生态风险评价. 评价结果表明,2020年渤海湾及其临近海域水体中锌的短期潜在生态风险较低,但存在长期风险. 高风险区域主要分布在近岸海域,并且夏季高于秋季.Abstract: Bohai Bay is located in one of the most economically developed areas in China. As the pollution load exceeds the environmental capacity, the aquatic ecosystem and functions of the Bohai Bay have been damaged to a certain extent. Seawater quality criteria are the basis for the establishment of seawater quality standards and rational protection of marine environment, but currently there are few studies on seawater quality criteria in China. This study derived the seawater quality criteria for zinc in Bohai Bay by species sensitivity distribution curve method. The derived short-term and long-term water quality criteria were 112.4 μg∙L−1 and 16.15 μg∙L−1, respectively. In the summer and autumn of 2020, the distribution of zinc in the Bohai Bay and its adjacent waters were monitored respectively. Ecological risks of zinc were assessed based on entropy method. The results showed that the short-term ecological risk of zinc in Bohai Bay and its adjacent waters in 2020 was low, but there was a long-term risk. The high-risk areas were mainly distributed in the coastal areas. In addition, the potential ecological risk for zinc in Bohai Bay has a seasonal variation, and it was higher in summer than in autumn.
-
表 1 急性毒性试验条件
Table 1. Experimental conditions for toxicity test
试验物种
Experimental species温度/℃
Temperature年龄
Age通气
Ventilate光照
Illumination体长
Body length暴露时间
Exposure time来源
Source丰年虫
Artemia salina26 成体 否 24 h光照 2 mm 24 h, 48 h 购自华霖 红鳍东方鲀
Takifugu rubripes20 — 持续通气 12 h光照
12 h黑暗8 mm 72 h, 96 h 购自唐山瑞辉水产 南美白对虾
Litopenaeus vannamei23 — 持续通气 12 h光照
12 h黑暗2 cm 24 h, 48 h, 72 h 购自黄骅泰阳种业 褶皱臂尾轮虫
Brachionus plicatilis25 — 持续通气 12 h光照
12 h黑暗170 μm 24 h 购自熙霖水族 小球藻
Chlorella vulgaris25 — 持续通气 12 h光照
12 h黑暗6—8 μm 24 h 分离纯化于渤海 文蛤
Meretrix meretrix12 成体 持续通气 12 h光照
12 h黑暗4.5 cm 48 h, 72 h 捕捞自滨海新区鲤鱼门 缢蛏
Sinonovacula constricta24 蛏苗 持续通气 12 h光照
12 h黑暗1 cm 24 h, 48 h 天津农学院 表 2 锌对渤海物种的急性试验数据
Table 2. Acute experimental data of zinc on species in Bohai Sea
门
Phylum科
Family属
Genus种
Species急性毒性/(μg∙L−1)
Acute toxicity脊索动物门 鲀科 东方鲀属 红鳍东方鲀 4770 软体动物门
软体动物门帘蛤科 文蛤属 文蛤 5650 竹蛏科 缢蛏属 缢蛏 2160 轮虫动物门 臂尾轮虫科 臂尾轮虫属 褶皱臂尾轮虫 4800 节肢动物门 盐水丰年虫科 丰年虫属 丰年虫 3680 节肢动物门 对虾科 滨对虾属 南美白对虾 2190 绿藻门 小球藻科 小球藻属 普通小球藻 1820 表 3 种平均急性值及累积频率
Table 3. Average acute value and cumulative frequency of species
拉丁学名
Binomial nomenclature物种i
Species参考文献
References种平均急性值/ (μg∙L−1)
SMAVi种平均急性值对数
lg(SMAVi, μg∙L−1)毒性秩次
R累积频率
PGlyptocidaris crenularis 海刺猬 [24] 120 2.07 1 0.0303 Crassostrea margaritacea 太平洋牡蛎 [25-26] 140 2.15 2 0.0606 Asterionella japonica 日本星杆藻 [27] 147 2.17 3 0.0909 Skeletonema costatum 中肋骨条藻 [28-29] 417.9 2.62 4 0.1212 Rachycentron canadum 军曹鱼 [30] 610 2.79 5 0.1515 Ulva pertusa 孔石莼 [31] 966 2.98 6 0.1818 Portunus trituberculatus 三疣梭子蟹 [32] 1040 3.02 7 0.2121 Penaeus chinensis 中国对虾 [33] 1320 3.12 8 0.2424 Pagrus major 真鲷 [34] 1350 3.13 9 0.2727 Nassarius festivus 秀丽织纹螺 [35] 1760 3.25 10 0.3030 Mizuhopecten yessoensis 虾夷扇贝 [36] 2040 3.31 11 0.3333 Sinonovacula constricta 缢蛏 试验 2160 3.33 12 0.3636 Litopenaeus vannamei 南美白对虾 [37] 2200 3.34 13 0.3939 Neomysis awatschensis 黑褐新糠虾 [38] 2211.3 3.34 14 0.4242 Mytilus coruscus 厚壳贻贝 [39] 2330 3.37 15 0.4545 Phaeodactylum tricornutum 三角褐指藻 [40-41] 3404.1 3.53 16 0.4848 Artemia salina 丰年虫 试验 3676.6 3.57 17 0.5152 Brachionus plicatilis 褶皱臂尾轮虫 [42] 4040 3.61 18 0.5455 Chlorella vulgaris 普通小球藻 [43] 4539.7 3.66 19 0.5758 Takifugu rubripes 红鳍东方鲀 试验 4770 3.68 20 0.6061 Cynoglossus joyneri 焦氏舌鳎 [44] 4830 3.68 21 0.6364 Boleophthalmus sp. 大弹涂鱼 [45] 4960 3.7 22 0.6667 Capitella capitata 小头虫 [46-49] 5150 3.71 23 0.6970 Exopalaemon carinicauda 脊尾白虾 [50-51] 5190 3.72 24 0.7273 Meretrix meretrix 文蛤 试验 5650 3.75 25 0.7576 Hydroides elegans 华美盘管虫 [52] 6960 3.84 26 0.7879 Acanthopagrus schlegelii 黑鲷 [53] 8270 3.92 27 0.8182 Mytilus edulis 紫贻贝 [54-56] 9330 3.97 28 0.8485 Paralichthys olivaceus 褐牙鲆 [57] 12090 4.08 29 0.8788 Nibea albiflora 黄姑鱼 [58] 16350 4.21 30 0.9091 Mya arenaria 砂海螂 [59] 49640 4.7 31 0.9394 Cyclina sinensis 青蛤 [60] 160000 5.2 32 0.9697 表 4 锌短期水质基准模型拟合结果
Table 4. Fitting result of zinc short-term water quality criteria
分布
Distribution方法
Method5%物种危害浓度/
(μg∙L−1)
HC5P值
P贝叶斯信息量准则
BIC赤池信息量准则
AIC标准误差
SE变异系数
CV1 normal ML 0.2356 0.2218 — 188.6254 0.1124 0.4772 2 logistic ML 0.2690 0.3836 — 187.0556 0.1354 0.5033 3 triangular ML 0.2115 0.0919 — 189.7002 0.1172 0.5539 4 gumbel ML 0.2474 0.0040 — 194.3988 0.0889 0.3592 5 weibull ML 0.0524 0.0170 — 195.9028 0.0610 1.1649 6 burr ML 0.2289 0.4466 — 189.1945 0.1734 0.7576 7 normal MH 0.2039 0.3894 191.3393 — 0.0942 0.4208 8 logistic MH 0.2253 0.2820 189.7914 — 0.1136 0.4532 9 triangular MH 0.1581 0.7142 193.3590 — 0.0678 0.3925 10 gumbel MH 0.2248 0.5770 197.1874 — 0.0739 0.3123 11 weibull MH 0.0613 0.4892 198.6593 — 0.0477 0.6934 12 burr MH 0.2785 0.5014 193.2010 — 0.1274 0.5040 注:ML(maximum likelihood)最大似然法;MH(metropolis Hastings) 蒙特卡罗方法;AIC(Akaike Information Criterion)赤池信息量准则;BIC(Bayesian Information Criterion)贝叶斯信息量准则;CV(Coefficient of Variation)变异系数;SE(standard error)标准误差. 表 5 种平均慢性值及累积频率
Table 5. Average chronic value and cumulative frequency of species
拉丁学名
Binomial nomenclature物种i
Species参考文献
References种平均慢性值/(μg∙L−1)
SMCVi种平均慢性值对数
lg(SMCVi/(μg∙L−1))毒性秩次
R累积频率
PStrongylocentrotus nudus 光棘球海胆 [61] 25.0 1.40 1 0.0909 Acanthopagrus schlegelii 黑鲷 [62] 57.7 1.76 2 0.1818 Mya arenaria 砂海螂 [63] 100.0 2 3 0.2727 Litopenaeus vannamei 南美白对虾 [64] 181.7 2.26 4 0.3636 Mytilus edulis 紫贻贝 [65-66] 316.2 2.5 5 0.4545 Ruditapes philippinarum 菲律宾帘蛤 [67-68] 353.4 2.55 6 0.5455 Zostera marina 大叶藻 [69] 681.4 2.83 7 0.6364 Crassostrea margaritacea 太平洋牡蛎 [65,70] 707.1 2.85 8 0.7273 Macrocystis pyrifera 巨藻 [71] 1071 3.03 9 0.8182 Capitella capitata 小头虫 [46] 5490 3.74 10 0.9091 表 6 锌长期水质基准模型拟合结果
Table 6. Fitting result of zinc long-term water quality criteria
分布
Distribution方法
Method5%物种危害浓度/
(μg∙L−1)
HC5P值
P贝叶斯信息量准则
BIC赤池信息量准则
AIC标准误差
SE变异系数
CV1 normal ML 0.0273 0.9840 — 17.7111 0.0290 1.0622 2 logistic ML 0.0250 0.9181 — 18.5087 0.0302 1.2069 3 triangular ML 0.0323 0.9880 — 18.8520 0.0383 1.1853 4 gumbel ML 0.0335 0.8581 — 19.2264 0.0255 0.7622 5 weibull ML 0.0085 0.9600 — 20.1572 0.0293 3.4534 6 burr ML 0.0281 0.8901 — 23.1102 0.0372 1.3234 1 normal MH 0.0148 0.0076 18.2863 — 0.0186 0.8349 2 logistic MH 0.0126 0.0078 18.5469 — 0.0191 0.9154 3 triangular MH 0.0127 0.0188 18.8871 — 0.0145 0.7565 4 gumbel MH 0.0219 0.0646 19.1847 — 0.0166 0.6037 5 weibull MH 0.0169 0.4582 20.7388 — 0.0213 1.0890 6 burr MH 0.0445 0.5232 21.7195 — 0.0245 0.9756 注:ML(maximum likelihood)最大似然法;MH(metropolis Hastings) 蒙特卡罗方法;AIC(Akaike Information Criterion)赤池信息量准则;BIC(Bayesian Information Criterion)贝叶斯信息量准则;CV(Coefficient of Variation)变异系数;SE(standard error)标准误差. -
[1] 王丽平, 雷坤, 乔艳珍. 天津渤海湾近岸海域沉积物中4种常见重金属的分布及其风险分析 [J]. 海洋环境科学, 2017, 36(5): 693-698. doi: 10.13634/j.cnki.mes.2017.05.009 WANG L P, LEI K, QIAO Y Z. Distribution and ecological risk assessment of four common metals in coastal sediment of Bohai Bay along Tianjin City, China [J]. Marine Environmental Science, 2017, 36(5): 693-698(in Chinese). doi: 10.13634/j.cnki.mes.2017.05.009
[2] TOMILINA I I, GREMYACHIKH V A, GREBENYUK L P, et al. The effect of zinc oxide nano- and microparticles and zinc ions on freshwater organisms of different trophic levels [J]. Inland Water Biology, 2014, 7(1): 88-96. doi: 10.1134/S1995082914010155 [3] COOPER N L, BIDWELL J R, KUMAR A. Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata [J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1523-1528. doi: 10.1016/j.ecoenv.2009.03.002 [4] 许艳, 王秋璐, 曾容, 等. 渤海湾表层沉积物重金属污染状况及年际变化分析[J]. 中国环境科学, 2022, 42(9): 4255-4263. XU Y, WANG Q L, ZENG R, et al. Pollution status and interannual variation of heavy metals in surface sediments of Bohai Bay[J]. Environmental Science, 2022, 42(9): 4255-4263.
[5] 陈秀, 李爽兆, 袁德奎, 等. 渤海湾沉积物重金属的分布特征及影响因素 [J]. 海洋科学进展, 2017, 35(3): 382-391. doi: 10.3969/j.issn.1671-6647.2017.03.008 CHEN X, LI S Z, YUAN D K, et al. Distribution characteristics of sediment heavy metals in Bohai Bay and its effect factors [J]. Advances in Marine Science, 2017, 35(3): 382-391(in Chinese). doi: 10.3969/j.issn.1671-6647.2017.03.008
[6] 孙雪华, 孙成, 刘红玲. 考虑物种权重校验保护太湖水生生物的铅基准 [J]. 环境化学, 2020, 39(6): 1578-1589. doi: 10.7524/j.issn.0254-6108.2020021203 SUN X H, SUN C, LIU H L. Weighted species sensitivity distribution method to derive site-specific quality criteria of lead for protection of aquatic life in Tai Lake [J]. Environmental Chemistry, 2020, 39(6): 1578-1589(in Chinese). doi: 10.7524/j.issn.0254-6108.2020021203
[7] 刘俐, 李亚兵, 刘红玲. 太湖保护水生生物2, 4-二氯苯酚基准研究 [J]. 环境化学, 2020, 39(7): 1774-1787. doi: 10.7524/j.issn.0254-6108.2019050502 LIU L, LI Y B, LIU H L. Derivation of water quality criteria of 2, 4-dichlorophenol for protection of aquatic life in Tai Lake [J]. Environmental Chemistry, 2020, 39(7): 1774-1787(in Chinese). doi: 10.7524/j.issn.0254-6108.2019050502
[8] KARTHIKEYAN P, MARIGOUDAR S R, MOHAN D, et al. Prescribing sea water quality criteria for arsenic, cadmium and lead through species sensitivity distribution [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111612. doi: 10.1016/j.ecoenv.2020.111612 [9] LEE M S, LEE J H, AN Y J, et al. Development of water quality criteria for arsenic to protect aquatic life based on species sensitivity distribution [J]. Ecotoxicology and Environmental Safety, 2020, 189: 109933. doi: 10.1016/j.ecoenv.2019.109933 [10] 中华人民共和国生态环境部. 中华人民共和国国家标准海水水质基准[S]. 2017. Ministry of Ecology and Environment of the People's Republic of China. National Standard of the People's Republic of China for seawater quality reference[S]. 2017 (in Chinese).
[11] 中华人民共和国环境保护部. 淡水水生生物水质基准制定技术指南: HJ 831—2017[S]. 北京: 中国环境出版社, 2017. Ministry of Environmental Protection of the People's Republic of China. Technical guideline for deriving water quality criteria for the protection of freshwater aquatic organisms: HJ 831—2017[S]. Beijing: China Environmental Science Press, 2017 (in Chinese).
[12] 陈莉, 蔡文倩, 韩雪萌, 等. 镉对渤海本地种的急性毒性效应及其海水水质基准推导 [J]. 中国海洋大学学报(自然科学版), 2021, 51(9): 93-102. doi: 10.16441/j.cnki.hdxb.20200284 CHEN L, CAI W Q, HAN X M, et al. Acute effect of cadmium on native species and seawater quality criteria derivation in the Bohai Sea [J]. Periodical of Ocean University of China, 2021, 51(9): 93-102(in Chinese). doi: 10.16441/j.cnki.hdxb.20200284
[13] 康凯莉, 管博, 李正炎. 中国近海环境中汞的水质基准与生态风险 [J]. 中国海洋大学学报(自然科学版), 2019, 49(1): 102-114. doi: 10.16441/j.cnki.hdxb.20170377 KANG K L, GUAN B, LI Z Y. Marine water quality criteria derivation and ecological risk assessment for mercury in coastal waters in China [J]. Periodical of Ocean University of China, 2019, 49(1): 102-114(in Chinese). doi: 10.16441/j.cnki.hdxb.20170377
[14] 洪鸣, 王菊英, 张志锋, 等. 海水中金属铅水质基准定值研究 [J]. 中国环境科学, 2016, 36(2): 626-633. doi: 10.3969/j.issn.1000-6923.2016.02.044 HONG M, WANG J Y, ZHANG Z F, et al. Study on seawater quality criteria for lead [J]. China Environmental Science, 2016, 36(2): 626-633(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.02.044
[15] 王莹, 穆景利, 王菊英. 我国硝基苯的海水水质基准及生态风险评估研究 [J]. 生态毒理学报, 2015, 10(1): 160-168. WANG Y, MU J L, WANG J Y. Derivation of marine water quality criteria and assessment of ecological risk of nitrobenzene in China [J]. Asian Journal of Ecotoxicology, 2015, 10(1): 160-168(in Chinese).
[16] 牛志广, 张玉彬, 吕志伟, 等. 三氯生的水质基准推导及其对渤海湾近岸海域的生态风险 [J]. 天津大学学报(自然科学与工程技术版), 2019, 52(7): 754-762. NIU Z G, ZHANG Y B, LÜ Z W, et al. Derivation of water quality criteria for triclosan concentration and its ecological risk to the coastal waters of Bohai Bay [J]. Journal of Tianjin University (Science and Technology), 2019, 52(7): 754-762(in Chinese).
[17] 朱韻洁, 朱晓艳, 林英姿, 等. 辽东湾营养盐基准值的研究与确定 [J]. 环境工程技术学报, 2021, 11(6): 1131-1136. doi: 10.12153/j.issn.1674-991X.20210065 ZHU Y J, ZHU X Y, LIN Y Z, et al. Study and determination of nutrient criteria in Liaodong Bay [J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1131-1136(in Chinese). doi: 10.12153/j.issn.1674-991X.20210065
[18] LI L, HE Y J, SONG K, et al. Derivation of water quality criteria of zinc to protect aquatic life in Taihu Lake and the associated risk assessment [J]. Journal of Environmental Management, 2021, 296: 113175. doi: 10.1016/j.jenvman.2021.113175 [19] US EPA. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses[S]. Washington DC: Office of Research and Development, US Environmental Protection Agency, 1985. [20] European C. Technical Guidance Document on Risk Assessment Part II[S]. Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market, 2003. [21] LIU Q, XU X Q, ZENG J N, et al. Development of marine water quality criteria for inorganic mercury in China based on the retrievable toxicity data and a comparison with relevant criteria or guidelines [J]. Ecotoxicology (London, England), 2019, 28(4): 412-421. doi: 10.1007/s10646-019-02032-2 [22] WEN J J, CUI X Y, GIBSON M, et al. Water quality criteria derivation and ecological risk assessment for triphenyltin in China [J]. Ecotoxicology and Environmental Safety, 2018, 161: 397-401. doi: 10.1016/j.ecoenv.2018.06.012 [23] LIU X Y, TU M C, WANG S P, et al. Research on freshwater water quality criteria, sediment quality criteria and ecological risk assessment of triclosan in China [J]. Science of the Total Environment, 2022, 816: 151616. doi: 10.1016/j.scitotenv.2021.151616 [24] XU X, WANG X, LI Y, et al. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis [J]. Human & Experimental Toxicology, 2011, 30(8): 1009-1021. [25] WATLING H R. Comparative study of the effects of zinc, cadmium, and copper on the larval growth of three oyster species [J]. Bulletin of Environmental Contamination and Toxicology, 1982, 28(2): 195-201. doi: 10.1007/BF01608575 [26] CHAPMAN P M, MCPHERSON C. Comparative zinc and lead toxicity tests with Arctic marine invertebrates and implications for toxicant discharges [J]. Polar Record, 1993, 29(168): 45-54. doi: 10.1017/S0032247400023202 [27] FISHER N S, JONES G J. Heavy metals and marine phytoplankton: Correlation of toxicity and sulfhydryl-binding [J]. Journal of Phycology, 1981, 17(1): 108-111. doi: 10.1111/j.1529-8817.1981.tb00827.x [28] WALSH G E, MCLAUGHLIN L L, YODER M J, et al. Minutocellus polymorphus: A new marine diatom for use in algal toxicity tests [J]. Environmental Toxicology and Chemistry, 1988, 7(11): 925-929. [29] WONG S W Y, LEUNG P T Y, DJURISIĆ A B, et al. Toxicities of nano zinc oxide to five marine organisms: Influences of aggregate size and ion solubility [J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 609-618. doi: 10.1007/s00216-009-3249-z [30] Acute toxicity test to determine the effects of copper, zinc and cyanide on cobia (Rachycentron canadum) resources in north Vietnam[J]. Australasian Journal of Ecotoxicology, 2005, 11(3): 163-166 [31] HAN Y S, BROWN M T, PARK G S, et al. Evaluating aquatic toxicity by visual inspection of thallus color in the green macroalga Ulva: Testing a novel bioassay [J]. Environmental Science & Technology, 2007, 41(10): 3667-3671. [32] 包坚敏, 王志铮, 杨阳, 等. 4种重金属离子对三疣梭子蟹大眼幼体的急性毒性 [J]. 浙江海洋学院学报(自然科学版), 2007, 26(4): 395-398. BAO J M, WANG Z Z, YANG Y, et al. Acute toxicity of four heavy metals on megalopa larvaes of Portunus trituberculatus [J]. Journal of Zhejiang Ocean University (Natural Science), 2007, 26(4): 395-398(in Chinese).
[33] 吴彰宽, 陈国江. 二十三种有害物质对对虾的急性致毒试验 [J]. 海洋科学, 1988, 12(4): 36-40. WU Z K, CHEN G J. Studies of acuie intoxication by some harmful substances on Penaeus orientalis K [J]. Marine Sciences, 1988, 12(4): 36-40(in Chinese).
[34] 蓝伟光, 陈霓. Hg, Cu, Cd, Zn 对真鲷仔鱼的急性毒性研究 [J]. 海洋科学, 1991, 15(5): 56-60. LAN W G, CHEN N. Acute toxicity of Hg, Cu, Cd, Zn to larvae of red sea bream, chrysophrys major [J]. Marine Sciences, 1991, 15(5): 56-60(in Chinese).
[35] CHEUNG S G, TAI K K, LEUNG C K, et al. Effects of heavy metals on the survival and feeding behaviour of the sandy shore scavenging gastropod Nassarius festivus (Powys) [J]. Marine Pollution Bulletin, 2002, 45: 107-113. doi: 10.1016/S0025-326X(01)00324-1 [36] 朱丽岩, 唐学玺, 徐怀恕, 等. 锌对虾夷扇贝和刺参幼体的毒性效应 [J]. 海洋通报, 1999, 18(4): 34-37. doi: 10.3969/j.issn.1001-6392.1999.04.005 ZHU L Y, TANG X X, XU H S, et al. Toxic effect of zinc on the larval Patinopecten yessoensis and Apostichopu sjaponnicus [J]. Marine Science Bulletin, 1999, 18(4): 34-37(in Chinese). doi: 10.3969/j.issn.1001-6392.1999.04.005
[37] WU J P, CHEN H C. Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei) [J]. Chemosphere, 2004, 57(11): 1591-1598. doi: 10.1016/j.chemosphere.2004.07.033 [38] 窦亚卿, 成永旭, 唐伯平, 等. Cu2+、Zn2+对黑褐新糠虾(Neomysis awatschensis)的毒性作用 [J]. 海洋环境科学, 2008, 27(1): 33-36. doi: 10.3969/j.issn.1007-6336.2008.01.009 DOU Y Q, CHENG Y X, TANG B P, et al. Toxic effects of Cu2+, Zn2+ on Neomysis awatschensis [J]. Marine Environmental Science, 2008, 27(1): 33-36(in Chinese). doi: 10.3969/j.issn.1007-6336.2008.01.009
[39] 周光锋, 王志铮, 杨阳, 等. 4种重金属离子对厚壳贻贝幼贝的急性毒性 [J]. 浙江海洋学院学报(自然科学版), 2007, 26(4): 391-394. ZHOU G F, WANG Z Z, YANG Y, et al. Acute toxic effects of four heavy metalson juveniles of Mytilus coruscus Gould [J]. Journal of Zhejiang Ocean University (Natural Science), 2007, 26(4): 391-394(in Chinese).
[40] ROSKO J J, RACHLIN J W. The effect of copper, zinc, cobalt and manganese on the growth of the marine diatom Nitzschia closterium [J]. Bulletin of the Torrey Botanical Club, 1975, 102(3): 100. doi: 10.2307/2484731 [41] HORVATIĆ J, PERSIĆ V. The effect of Ni2+, Co2+, Zn2+, Cd2+ and Hg2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: Microplate growth inhibition test [J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 494-498. doi: 10.1007/s00128-007-9291-7 [42] 金解敏, 杨家新, 陈立侨. 铜锌离子对褶皱臂尾轮虫的急性毒性试验 [J]. 水产科技情报, 1999, 26(3): 121-123,126. doi: 10.16446/j.cnki.1001-1994.1999.03.007 JIN J M, YANG J X, CHEN L Q. The toxic effect of copper and zinc on rotifer Brachionus plicatilis [J]. Fisheries Science & Technology Information, 1999, 26(3): 121-123,126(in Chinese). doi: 10.16446/j.cnki.1001-1994.1999.03.007
[43] 胡冰, 王华, 张冬冬, 等. 纳米TiO2和Cu(Ⅱ)、Zn(Ⅱ)对小球藻和新月菱形藻的毒性研究 [J]. 大连海洋大学学报, 2015, 30(5): 489-493. HU B, WANG H, ZHANG D D, et al. Toxicity of TiO2 nanoparticles, Cu(Ⅱ) and Zn(Ⅱ) to Chlorella sp. and Nitzschia closterium [J]. Journal of Dalian Ocean University, 2015, 30(5): 489-493(in Chinese).
[44] 崔可铎, 刘玉梅, 侯兰英. 汞等六种重金属对鱼卵孵化和仔鱼成活的影响 [J]. 海洋与湖沼, 1987, 18(2): 138-144. CUI K D, LIU Y M, HOU L Y. Effects of six heavy metals on hatching eggs and survival of larval of marine fish [J]. Oceanologia et Limnologia Sinica, 1987, 18(2): 138-144(in Chinese).
[45] KIDWAI S, AHMED M. Heavy metal bioassays on selected fauna from the Karachi coast (Northwest Arabian Sea) [J]. Pakistan Journal of Zoology, 1999, 31(2): 147-157. [46] REISH D J, GERLINGER T V, PHILLIPS C A, et al. Toxicity of formulated mine tailings on marine Polychaete [J]. Marine Biological Consultants, Coasta Mesa, 1977, CA: 133. [47] REISH D J, LEMAY J A. Toxicity and bioconcentration of metals and organic compounds by Polychaeta [J]. Ophelia, 1991, 5: 653-660. [48] REISH D J. The effects of heavy metals on polychaetous annelids[J]. Review International Oceanography Mediterranean. 1978, 49(3): 99-104 [49] REISH D J, MARTIN J M, PILTZ F M, et al. The effect of heavy metals on laboratory populations of two polychaetes with comparisons to the water quality conditions and standards in Southern California marine waters [J]. Water Research, 1976, 10(4): 299-302. doi: 10.1016/0043-1354(76)90170-6 [50] 张彩明, 陈应华. Cr6+、Mn7+和Zn2+对脊尾白虾幼虾的单一毒性和联合毒性 [J]. 海洋环境科学, 2013, 32(2): 235-238. ZHANG C M, CHEN Y H. Acute toxicity and joint toxicity of Cr6+, Mn7+ and Zn2+ on Palaemon carincauda juvenile [J]. Marine Environmental Science, 2013, 32(2): 235-238(in Chinese).
[51] 郑琰晶, 魏社林, 吴进孝, 等. Cu2+、Zn2+、SDS、DBS对脊尾白虾的毒性试验 [J]. 热带海洋学报, 2006, 25(5): 87-90. doi: 10.3969/j.issn.1009-5470.2006.05.015 ZHENG Y J, WEI S L, WU J X, et al. Toxicity effect of Cu2+, Zn2+, SDS and DBS on Palaemon carincauda [J]. Journal of Tropical Oceanography, 2006, 25(5): 87-90(in Chinese). doi: 10.3969/j.issn.1009-5470.2006.05.015
[52] GOPALAKRISHNAN S, THILAGAM H, RAJA P V. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans [J]. Chemosphere, 2008, 71(3): 515-528. doi: 10.1016/j.chemosphere.2007.09.062 [53] 吕敢堂, 王志铮, 邵国洱, 等. 4种重金属离子对黑鲷幼鱼的急性毒性研究 [J]. 浙江海洋学院学报(自然科学版), 2010, 29(3): 206-210. LV G T, WANG Z Z, SHAO G E, et al. Acute toxicity of four kinds of heavy metal on juveniles Sparus Macrocephalus [J]. Journal of Zhejiang Ocean University (Natural Science), 2010, 29(3): 206-210(in Chinese).
[54] HIETANEN B, SUNILA I, KRISTOFFERSSON R. Toxic effects of zinc on the common mussel Mytilus edulis l. Bivalvia in brackish water i. physiological and histopathological studies [J]. Annales Zoologici Fennici, 1988, 25: 341-347. [55] AMIARD-TRIQUET C, BERTHET B, METAYER C, et al. Contribution to the ecotoxicological study of cadmium, copper and zinc in the mussel Mytilus edulis [J]. Marine Biology, 1986, 92(1): 7-13. doi: 10.1007/BF00392739 [56] ABEL P D. Effect of some pollutants on the filtration rate of Mytilus [J]. Marine Pollution Bulletin, 1976, 7(12): 228-231. doi: 10.1016/0025-326X(76)90267-8 [57] 黄伟. 汞、铅、锌对褐牙鲆(Paralichthys olivaceus)早期发育过程毒理作用的研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2010. HUANG W. Toxic effects of mercury, lead and zinc on early life stages of flounder (Paralichthys olivaceus)[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2010(in Chinese).
[58] 王志铮, 刘祖毅, 吕敢堂, 等. Hg2+、Zn2+、Cr6+对黄姑鱼幼鱼的急性致毒效应 [J]. 中国水产科学, 2005, 12(6): 745-750. doi: 10.3321/j.issn:1005-8737.2005.06.013 WANG Z Z, LIU Z Y, LU G T, et al. Acute toxic effects of Hg2+, Zn2+ and Cr6+ on Nibea albiflora juvenile [J]. Journal of Fishery Sciences of China, 2005, 12(6): 745-750(in Chinese). doi: 10.3321/j.issn:1005-8737.2005.06.013
[59] EISLER R, HENNEKEY R J. Acute toxicities of Cd2+, Cr^+6, Hg2+, Ni2+ and Zn2+ to estuarine macrofauna [J]. Archives of Environmental Contamination and Toxicology, 1977, 6(1): 315-323. doi: 10.1007/BF02097772 [60] 周凯, 么宗利, 来琦芳, 等. 重金属Zn2+、Cd2+对青蛤幼贝的致毒效应 [J]. 海洋渔业, 2007, 29(1): 63-67. doi: 10.3969/j.issn.1004-2490.2007.01.012 ZHOU K, YAO Z L, LAI Q F, et al. Acute toxicity effects of Zn2+ and Cd2+ on juveniles of clam (Cyclina sinensis) [J]. Marine Fisheries, 2007, 29(1): 63-67(in Chinese). doi: 10.3969/j.issn.1004-2490.2007.01.012
[61] DURKINA V B. Morphofunctional changes in development of Sea Urchin Offspring as a Result of adult exposure to copper and zinc[J]. Russian Journal of Marine Biology. 1995, 21(6): 351-355 (in Chinese). [62] ZHANG L, WANG W X. Effects of Zn pre-exposure on Cd and Zn bioaccumulation and metallothionein levels in two species of marine fish [J]. Aquatic Toxicology, 2005, 73(4): 353-369. doi: 10.1016/j.aquatox.2005.04.001 [63] PARISEAU J, SAINT-LOUIS R, DELAPORTE M, et al. Potential link between exposure to fungicides chlorothalonil and mancozeb and haemic neoplasia development in the soft-shell clam Mya arenaria: A laboratory experiment [J]. Marine Pollution Bulletin, 2009, 58(4): 503-514. doi: 10.1016/j.marpolbul.2008.12.011 [64] WU J P, CHEN H C. Effects of cadmium and zinc on the growth, food consumption, and nutritional conditions of the white shrimp, Litopenaeus vannamei (Boone) [J]. Bulletin of Environmental Contamination and Toxicology, 2005, 74(2): 234-241. doi: 10.1007/s00128-004-0575-x [65] GÉRET F, JOUAN A, TURPIN V, et al. Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: The oyster (Crassostrea gigas) and the mussel (Mytilus edulis) [J]. Aquatic Living Resources, 2002, 15(1): 61-66. doi: 10.1016/S0990-7440(01)01147-0 [66] NAYLOR G P L. The responses of Cockles to heavy metal pollution and their use in the study of metal to metal uptake interactions[D]. UK: University of Manchester, 1987: 169. [67] MARTÍN-DÍAZ M L, BLASCO J, GONZÁLEZ de CANALES M, et al. Bioaccumulation and toxicity of dissolved heavy metals from the Guadalquivir Estuary after the Aznalcóllar mining spill using Ruditapes philippinarum [J]. Archives of Environmental Contamination and Toxicology, 2005, 48(2): 233-241. doi: 10.1007/s00244-003-9202-9 [68] NG T, WANG W X. Detoxification and effects of Ag, Cd, and Zn pre-exposure on metal uptake kinetics in the clam Ruditapes philippinarum [J]. Marine Ecology Progress Series, 2004, 268: 161-172. doi: 10.3354/meps268161 [69] ZOSTERA M. The uptake of heavy metals in eelgrass zostera marina and their effect on growth[J]. Ecological Bulletion. 1984, 36: 81-89. [70] WATLING H. The effects of metals on mollusc filtering rates [J]. Transactions of the Royal Society of South Africa, 1981, 44(3): 441-451. doi: 10.1080/00359198109520587 [71] ANDERSON B S, HUNT J W, MARTIN M, et al. Marine Bioassay Project. 3rd Report. Protocol Development: Reference Toxicant and Initial Complex Effluent Testing. Div. of Water Qual. Rep. No. 88-7WQ, State Water Resources[R]. Control Board, State of California, Sacramento, CA, 1988: 154 . [72] US EPA. Ambient water quality criteria for zinc[S]. New York: Office of Water, US Environmental Protection Agency, 1980. [73] CCME. Canadian environmental quality guidelines[S]. Winnipeg: Canadian Council of Ministers of the Environment, 2010. [74] ANZEC C, ARMCAN Z. Australian and new zealand guidelines forfresh and marinewater quality[S]. Canberra: Australian and NewZealand Environment and Conservation Council and Agricultureand Resource Management Council of Australia and New Zealand, 2000.