气相氢氟烃和氢氟烯烃与·OH反应的量子化学计算方法筛选

丁保君, 姜琦, 夏德铭, 马芳芳, 陈景文. 气相氢氟烃和氢氟烯烃与·OH反应的量子化学计算方法筛选[J]. 环境化学, 2023, 42(10): 3256-3264. doi: 10.7524/j.issn.0254-6108.2022050501
引用本文: 丁保君, 姜琦, 夏德铭, 马芳芳, 陈景文. 气相氢氟烃和氢氟烯烃与·OH反应的量子化学计算方法筛选[J]. 环境化学, 2023, 42(10): 3256-3264. doi: 10.7524/j.issn.0254-6108.2022050501
DING Baojun, JIANG Qi, XIA Deming, MA Fangfang, CHEN Jingwen. Screening of quantum chemical method for the reactions of hydrofluorocarbons and hydrofluoroolefins with ·OH in the Atmosphere[J]. Environmental Chemistry, 2023, 42(10): 3256-3264. doi: 10.7524/j.issn.0254-6108.2022050501
Citation: DING Baojun, JIANG Qi, XIA Deming, MA Fangfang, CHEN Jingwen. Screening of quantum chemical method for the reactions of hydrofluorocarbons and hydrofluoroolefins with ·OH in the Atmosphere[J]. Environmental Chemistry, 2023, 42(10): 3256-3264. doi: 10.7524/j.issn.0254-6108.2022050501

气相氢氟烃和氢氟烯烃与·OH反应的量子化学计算方法筛选

    通讯作者: E-mail:dingbj@dlut.edu.cn
  • 基金项目:
    国家重点研究发展计划(2018YFC1801604,2018YFE0110700)和国家自然科学基金(22136001)资助

Screening of quantum chemical method for the reactions of hydrofluorocarbons and hydrofluoroolefins with ·OH in the Atmosphere

    Corresponding author: DING Baojun, dingbj@dlut.edu.cn
  • Fund Project: the National Key Research and Development Program (2018YFC1801604, 2018YFE0110700) and the National Natural Science Foundation of China (22136001)
  • 摘要: 氢氟烃 (HFCs)和氢氟烯烃 (HFOs)常被用作氢氯氟烃的替代物. 为评估HFCs和HFOs是否可以理想替代氢氯氟烃,需要对其大气转化进行充分研究,尤其需要充分了解其大气持久性的信息. 目前用于评估化学品大气持久性的重要参数气相羟基自由基(·OH)二级反应速率常数(kOH)的数据量尚不能满足多种HFCs和HFOs的评估. 因此有必要发展能够快速预测kOH的方法. 量子化学计算方法具有高效、准确的优点,是预测kOH的重要手段. 然而目前研究使用的量子化学方法纷繁复杂,亟需筛选适合HFCs和HFOs的量子化学方法. 本研究基于3种HFCs(CF3CF2H、CF3CH2CF3和CF3CF2(CHF)2CF3)和2个HFOs(CF2CH2和CF3CH2CF3)的实验数据,从多种热力学参数计算方法和动力学计算方法中筛选适用于计算HFCs和HFOs气相kOH的方法. 研究结果表明,通过对比lgkOH的实测值与不同计算方法所得计算值之间的平均绝对误差(MAE),利用Skodje-Truhlar隧道效应校正系数 (κS)修正传统过渡态理论(TST),再结合M06-2X-D3/def2-TZVP//M06-2X/cc-pVDZ水平的密度泛函理论(DFT)计算HFCs的kOH效果最好,其MAE值为0.17;采用Wigner隧道效应校正系数 (κW)修正的TST结合M06-2X-D3/aug-cc-pVTZ//M06-2X/cc-pVDZ (MAE = 0.50)的方法计算HFOs的kOH效果最好;而κS修正TST的M06-2X-D3/aug-cc-pVTZ//M06-2X/cc-pVDZ (MAE = 0.34)或M06-2X-D3/jul-cc-pVTZ//M06-2X/cc-pVDZ (MAE = 0.35)方法都适用于计算HFCs和HFOs的kOH. 本研究筛选的方法为快速、准确计算HFCs和HFOs的kOH及评估其大气持久性提供了方法支撑.
  • 加载中
  • 图 1  参考HFCs和HFOs的最低能量构象(距离单位为nm)

    Figure 1.  Global minimum conformations of HFCs and HFOs as reference (The unit of distance is nm)

    图 2  CF3CFH2 (A)、CF3CH2CF3 (B)、C2F5(CHF)2CF3 (C)、 CF2=CH2 (D)、 CF3(CF2)7CH2=CH2 (E)与·OH反应的所有反应通道

    Figure 2.  Possible pathways for the reactions of CF3CFH2 (A), CF3CH2CF3 (B), C2F5(CHF)2CF3 (C), CF2=CH2 (D), CF3(CF2)7CH2=CH2 (E) with ·OH.

    图 3  ·OH与CF3(CF2)7CH=CH2反应的过渡态结构(距离单位为nm)

    Figure 3.  Transition-state geometries for the reaction of ·OH with CF3(CF2)7CH=CH2 (The unit of distance is nm)

    表 1  过渡态理论(TST)结合隧道效应校正 (κ)和不同单点能方法计算的模型化合物的kOH (cm3·molecule−1·s−1

    Table 1.  kOH (cm3·molecule−1·s−1) of selected compounds calculated by the combination transition-state theory (TST) with different transmission coefficient (κ) correction and single-point-energy calculation methods.

    单点能方法
    Zero-point energy method
    κ化合物
    Compound
    CF3CF2HCF3CH2CF3CF3CF2(CHF)2CF3CF2=CH2CF3(CF2)7CH=CH2
    实测值6.25 × 10−159.57 × 10−163.29 × 10−152.49 × 10−121.36 × 10−12
    M06-2X-D3/aug-cc-pVTZκS4.11 × 10−151.16 × 10−158.55 × 10−151.58 × 10−121.34 × 10−13
    κW1.27 × 10−151.79 × 10−163.98 × 10−151.55 × 10−121.84 × 10−13
    M06-2X-D3/may-cc-pVTZκS3.19 × 10−159.33 × 10−166.86 × 10−158.18 × 10−131.22 × 10−13
    κW9.22 × 10−161.35 × 10−162.96 × 10−151.02 × 10−121.48 × 10−13
    M06-2X-D3/jun-cc-pVTZκS3.50 × 10−151.01 × 10−157.28 × 10−151.23× 10−121.24 × 10−13
    κW1.03 × 10−151.49 × 10−163.20 × 10−151.20 × 10−121.55 × 10−13
    M06-2X-D3/jul-cc-pVTZκS3.78 × 10−151.10 × 10−158.05 × 10−151.51 × 10−121.31 × 10−13
    κW1.14 × 10−151.67 × 10−163.67 × 10−151.48 × 10−121.73 × 10−13
    M06-2X-D3/def2-TZVPκS2.96 × 10−159.03 × 10−166.51 × 10−158.07× 10−131.33 × 10−13
    κW8.40 × 10−161.29 × 10−162.75 × 10−159.62 × 10−131.88 × 10−13
    M06-2X-D3/def2-TZVPPκS4.27 × 10−151.12 × 10−158.28 × 10−157.25 × 10−131.14 × 10−13
    κW1.33 × 10−151.71 × 10−163.80 × 10−158.58 × 10−131.34 × 10−13
    M06-2X-D3/pcseg-2κS2.50 × 10−156.47 × 10−165.31 × 10−154.81 × 10−137.27 × 10−14
    κW6.79 × 10−168.47 × 10−172.10 × 10−155.57 × 10−137.52 × 10−14
    M06-2X-D3/MG3SκS4.16 × 10−151.18 × 10−151.18 × 10−141.59 × 10−121.32 × 10−13
    κW1.29 × 10−151.82 × 10−166.08 × 10−151.56 × 10−121.71 × 10−13
    ωB97X-D/aug-cc-pVTZκS3.99 × 10−144.43 × 10−153.45 × 10−145.10 × 10−114.72 × 10−12
    κW2.72 × 10−141.08 × 10−152.96 × 10−144.99 × 10−114.54 × 10−12
    ωB97X-D/may-cc-pVTZκS3.34 × 10−143.65 × 10−152.92 × 10−143.51 × 10−113.84 × 10−12
    κW2.08 × 10−148.32 × 10−162.26 × 10−143.44 × 10−113.69 × 10−12
    ωB97X-D/jun-cc-pVTZκS3.57 × 10−143.97 × 10−153.09 × 10−144.17 × 10−114.10 × 10−12
    κW2.30 × 10−149.34 × 10−162.48 × 10−144.11 × 10−113.94 × 10−12
    ωB97X-D/jul-cc-pVTZκS3.75 × 10−144.24 × 10−153.31 × 10−144.88 × 10−114.51 × 10−12
    κW2.47 × 10−141.02 × 10−152.77× 10−144.78 × 10−114.34 × 10−12
    ωB97X-D/def2-TZVPκS3.43 × 10−144.49 × 10−153.27 × 10−142.94 × 10−115.78 × 10−12
    κW2.17 × 10−141.09 × 10−152.71 × 10−142.88 × 10−115.56 × 10−12
    ωB97X-D/def2-TZVPPκS4.29 × 10−145.29 × 10−153.70 × 10−142.99 × 10−114.56 × 10−12
    κW3.07 × 10−141.36 × 10−153.33 × 10−142.93 × 10−114.38 × 10−12
    ωB97X-D/pcseg-2κS2.53 × 10−142.93 × 10−152.35 × 10−142.06 × 10−112.58 × 10−12
    κW1.40 × 10−146.24 × 10−161.63 × 10−142.01 × 10−112.53 × 10−12
    ωB97X-D/MG3SκS4.93× 10−145.99 × 10−155.07 × 10−148.90 × 10−111.08 × 10−11
    κW3.75 × 10−141.59 × 10−155.65 × 10−148.71 × 10−111.04 × 10−11
    单点能方法
    Zero-point energy method
    κ化合物
    Compound
    CF3CF2HCF3CH2CF3CF3CF2(CHF)2CF3CF2=CH2CF3(CF2)7CH=CH2
    实测值6.25 × 10−159.57 × 10−163.29 × 10−152.49 × 10−121.36 × 10−12
    M06-2X-D3/aug-cc-pVTZκS4.11 × 10−151.16 × 10−158.55 × 10−151.58 × 10−121.34 × 10−13
    κW1.27 × 10−151.79 × 10−163.98 × 10−151.55 × 10−121.84 × 10−13
    M06-2X-D3/may-cc-pVTZκS3.19 × 10−159.33 × 10−166.86 × 10−158.18 × 10−131.22 × 10−13
    κW9.22 × 10−161.35 × 10−162.96 × 10−151.02 × 10−121.48 × 10−13
    M06-2X-D3/jun-cc-pVTZκS3.50 × 10−151.01 × 10−157.28 × 10−151.23× 10−121.24 × 10−13
    κW1.03 × 10−151.49 × 10−163.20 × 10−151.20 × 10−121.55 × 10−13
    M06-2X-D3/jul-cc-pVTZκS3.78 × 10−151.10 × 10−158.05 × 10−151.51 × 10−121.31 × 10−13
    κW1.14 × 10−151.67 × 10−163.67 × 10−151.48 × 10−121.73 × 10−13
    M06-2X-D3/def2-TZVPκS2.96 × 10−159.03 × 10−166.51 × 10−158.07× 10−131.33 × 10−13
    κW8.40 × 10−161.29 × 10−162.75 × 10−159.62 × 10−131.88 × 10−13
    M06-2X-D3/def2-TZVPPκS4.27 × 10−151.12 × 10−158.28 × 10−157.25 × 10−131.14 × 10−13
    κW1.33 × 10−151.71 × 10−163.80 × 10−158.58 × 10−131.34 × 10−13
    M06-2X-D3/pcseg-2κS2.50 × 10−156.47 × 10−165.31 × 10−154.81 × 10−137.27 × 10−14
    κW6.79 × 10−168.47 × 10−172.10 × 10−155.57 × 10−137.52 × 10−14
    M06-2X-D3/MG3SκS4.16 × 10−151.18 × 10−151.18 × 10−141.59 × 10−121.32 × 10−13
    κW1.29 × 10−151.82 × 10−166.08 × 10−151.56 × 10−121.71 × 10−13
    ωB97X-D/aug-cc-pVTZκS3.99 × 10−144.43 × 10−153.45 × 10−145.10 × 10−114.72 × 10−12
    κW2.72 × 10−141.08 × 10−152.96 × 10−144.99 × 10−114.54 × 10−12
    ωB97X-D/may-cc-pVTZκS3.34 × 10−143.65 × 10−152.92 × 10−143.51 × 10−113.84 × 10−12
    κW2.08 × 10−148.32 × 10−162.26 × 10−143.44 × 10−113.69 × 10−12
    ωB97X-D/jun-cc-pVTZκS3.57 × 10−143.97 × 10−153.09 × 10−144.17 × 10−114.10 × 10−12
    κW2.30 × 10−149.34 × 10−162.48 × 10−144.11 × 10−113.94 × 10−12
    ωB97X-D/jul-cc-pVTZκS3.75 × 10−144.24 × 10−153.31 × 10−144.88 × 10−114.51 × 10−12
    κW2.47 × 10−141.02 × 10−152.77× 10−144.78 × 10−114.34 × 10−12
    ωB97X-D/def2-TZVPκS3.43 × 10−144.49 × 10−153.27 × 10−142.94 × 10−115.78 × 10−12
    κW2.17 × 10−141.09 × 10−152.71 × 10−142.88 × 10−115.56 × 10−12
    ωB97X-D/def2-TZVPPκS4.29 × 10−145.29 × 10−153.70 × 10−142.99 × 10−114.56 × 10−12
    κW3.07 × 10−141.36 × 10−153.33 × 10−142.93 × 10−114.38 × 10−12
    ωB97X-D/pcseg-2κS2.53 × 10−142.93 × 10−152.35 × 10−142.06 × 10−112.58 × 10−12
    κW1.40 × 10−146.24 × 10−161.63 × 10−142.01 × 10−112.53 × 10−12
    ωB97X-D/MG3SκS4.93× 10−145.99 × 10−155.07 × 10−148.90 × 10−111.08 × 10−11
    κW3.75 × 10−141.59 × 10−155.65 × 10−148.71 × 10−111.04 × 10−11
    下载: 导出CSV

    表 2  理论计算lgkOH的平均绝对误差(MAE) (kOH: cm3·molecule−1·s−1

    Table 2.  Mean absolute deviation (MAE) values of theoretical lgkOH for selected compounds. (kOH: cm3·molecule−1·s−1

    单点能方法

    Zero-point energy method
    MAE (TST × κWMAE (TST × κS
    HFCs和HFCsHFCsHFOsHFCs和HFCsHFCsHFOs
    M06-2X-D3/aug-cc-pVTZ0.470.450.500.340.200.56
    M06-2X-D3/may-cc-pVTZ0.570.530.640.390.170.72
    M06-2X-D3/jun-cc-pVTZ0.530.490.590.360.180.63
    M06-2X-D3/jul-cc-pVTZ0.490.460.520.350.190.58
    M06-2X-D3/def2-TZVP0.580.560.600.380.170.69
    M06-2X-D3/def2-TZVPP0.540.440.690.410.180.75
    M06-2X-D3/pcseg-20.780.690.910.500.210.93
    M06-2X-D3/MG3S0.510.510.510.370.240.56
    ωB97x-D/aug-cc-pVTZ0.740.590.950.910.870.97
    ωB97X-D/may-cc-pVTZ0.630.500.830.810.800.84
    ωB97X-D/jun-cc-pVTZ0.660.520.880.850.830.89
    ωB97X-D/jul-cc-pVTZ0.710.560.930.890.850.95
    ωB97X-D/def2-TZVP0.680.550.880.860.850.89
    ωB97X-D/def2-TZVPP0.730.660.830.890.920.84
    ωB97X-D/pcseg-20.510.430.630.670.690.64
    ωB97X-D/MG3S0.970.791.251.111.001.27
    单点能方法

    Zero-point energy method
    MAE (TST × κWMAE (TST × κS
    HFCs和HFCsHFCsHFOsHFCs和HFCsHFCsHFOs
    M06-2X-D3/aug-cc-pVTZ0.470.450.500.340.200.56
    M06-2X-D3/may-cc-pVTZ0.570.530.640.390.170.72
    M06-2X-D3/jun-cc-pVTZ0.530.490.590.360.180.63
    M06-2X-D3/jul-cc-pVTZ0.490.460.520.350.190.58
    M06-2X-D3/def2-TZVP0.580.560.600.380.170.69
    M06-2X-D3/def2-TZVPP0.540.440.690.410.180.75
    M06-2X-D3/pcseg-20.780.690.910.500.210.93
    M06-2X-D3/MG3S0.510.510.510.370.240.56
    ωB97x-D/aug-cc-pVTZ0.740.590.950.910.870.97
    ωB97X-D/may-cc-pVTZ0.630.500.830.810.800.84
    ωB97X-D/jun-cc-pVTZ0.660.520.880.850.830.89
    ωB97X-D/jul-cc-pVTZ0.710.560.930.890.850.95
    ωB97X-D/def2-TZVP0.680.550.880.860.850.89
    ωB97X-D/def2-TZVPP0.730.660.830.890.920.84
    ωB97X-D/pcseg-20.510.430.630.670.690.64
    ωB97X-D/MG3S0.970.791.251.111.001.27
    下载: 导出CSV

    表 3  模型化合物与·OH反应的能垒(ΔE: kJ·mol−1, 0 K)、标准活化自由能(ΔG‡,0: kJ·mol−1, 298 K)、反应焓变(ΔrH: kJ·mol−1, 298 K)、过渡态虚频(υi: cm−1)和kOH (cm3·molecule−1 s−1, 298 K)的计算值

    Table 3.  Calculated energy barrier (ΔE: kJ·mol−1, 0 K), the standard Gibbs free energy of activation (ΔG‡,0: kJ·mol−1, 298 K), enthalpy (ΔH: kJ·mol−1, 298 K), frequency of TSs (υi: cm−1) and kOH (cm3·molecule−1·s−1, 298 K) values for selected compounds reacting with ·OH.

    反应通道
    Reaction pathway
    κ单点能方法
    Zero-point energy method
    ΔG‡,0EΔHυikOH
    CF3CH2F实测kOH:6.25 × 10−15计算kOH:2.96 × 10−15
    1a, 2aκSM06-2X-D3/def2-TZVP52.9017.71−62.671461.491.48 × 10−15
    CF3CH2CF3实测kOH:9.57 × 10−16计算kOH:9.03× 10−16
    1bκSM06-2X-D3/def2-TZVP58.0723.16−46.481575.734.00 × 10−16
    2bκSM06-2X-D3/def2-TZVP57.6122.83−43.771600.205.03 × 10−16
    CF3CF2(CHF)2CF3实测kOH:3.29 × 10−15计算kOH:6.51 × 10−15
    1cκSM06-2X-D3/def2-TZVP52.0815.42−73.121486.681.79 × 10−15
    2cM06-2X-D3/def2-TZVP48.7712.75−74.711429.224.73 × 10−15
    CF2=CH2实测kOH:2.49 × 10−12计算kOH:1.55 × 10−12
    1d, 2dκWM06-2X-D3/aug-cc-pVTZ67.088.22−3.111344.441.23 × 10−18
    3d, 4dκWM06-2X-D3/aug-cc-pVTZ33.54−0.15−128.79437.724.00 × 10−13
    5d, 6dκWM06-2X-D3/aug-cc-pVTZ33.62−0.64−186.12392.383.76 × 10−13
    CF3(CF2)7CH=CH2实测kOH:1.36 × 10−12计算kOH:1.84 × 10−13
    1eκWM06-2X-D3/aug-cc-pVTZ59.0625.11−25.631532.353.73 × 10−17
    2eκWM06-2X-D3/aug-cc-pVTZ61.9725.33−24.341619.521.25 × 10−17
    3eκWM06-2X-D3/aug-cc-pVTZ60.4025.27−23.021527.162.16 × 10−17
    4eκWM06-2X-D3/aug-cc-pVTZ43.506.34−129.20536.447.76 × 10−15
    5eκWM06-2X-D3/aug-cc-pVTZ35.720.64−127.38497.651.74 × 10−13
    6eκWM06-2X-D3/aug-cc-pVTZ46.688.99−118.41470.142.04 × 10−15
    反应通道
    Reaction pathway
    κ单点能方法
    Zero-point energy method
    ΔG‡,0EΔHυikOH
    CF3CH2F实测kOH:6.25 × 10−15计算kOH:2.96 × 10−15
    1a, 2aκSM06-2X-D3/def2-TZVP52.9017.71−62.671461.491.48 × 10−15
    CF3CH2CF3实测kOH:9.57 × 10−16计算kOH:9.03× 10−16
    1bκSM06-2X-D3/def2-TZVP58.0723.16−46.481575.734.00 × 10−16
    2bκSM06-2X-D3/def2-TZVP57.6122.83−43.771600.205.03 × 10−16
    CF3CF2(CHF)2CF3实测kOH:3.29 × 10−15计算kOH:6.51 × 10−15
    1cκSM06-2X-D3/def2-TZVP52.0815.42−73.121486.681.79 × 10−15
    2cM06-2X-D3/def2-TZVP48.7712.75−74.711429.224.73 × 10−15
    CF2=CH2实测kOH:2.49 × 10−12计算kOH:1.55 × 10−12
    1d, 2dκWM06-2X-D3/aug-cc-pVTZ67.088.22−3.111344.441.23 × 10−18
    3d, 4dκWM06-2X-D3/aug-cc-pVTZ33.54−0.15−128.79437.724.00 × 10−13
    5d, 6dκWM06-2X-D3/aug-cc-pVTZ33.62−0.64−186.12392.383.76 × 10−13
    CF3(CF2)7CH=CH2实测kOH:1.36 × 10−12计算kOH:1.84 × 10−13
    1eκWM06-2X-D3/aug-cc-pVTZ59.0625.11−25.631532.353.73 × 10−17
    2eκWM06-2X-D3/aug-cc-pVTZ61.9725.33−24.341619.521.25 × 10−17
    3eκWM06-2X-D3/aug-cc-pVTZ60.4025.27−23.021527.162.16 × 10−17
    4eκWM06-2X-D3/aug-cc-pVTZ43.506.34−129.20536.447.76 × 10−15
    5eκWM06-2X-D3/aug-cc-pVTZ35.720.64−127.38497.651.74 × 10−13
    6eκWM06-2X-D3/aug-cc-pVTZ46.688.99−118.41470.142.04 × 10−15
    下载: 导出CSV
  • [1] HODNEBROG, ETMINAN M, FUGLESTVEDT J S, et al. Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review [J]. Reviews of Geophysics, 2013, 51(2): 300-378. doi: 10.1002/rog.20013
    [2] ABAS N, KALAIR A R, KHAN N, et al. Natural and synthetic refrigerants, global warming: A review [J]. Renewable and Sustainable Energy Reviews, 2018, 90: 557-569. doi: 10.1016/j.rser.2018.03.099
    [3] BIRMPILI T. Montreal protocol at 30: The governance structure, the evolution, and the Kigali amendment [J]. Comptes Rendus Geoscience, 2018, 350(7): 425-431. doi: 10.1016/j.crte.2018.09.002
    [4] FLERLAGE H, VELDERS G J M, de BOER J. A review of bottom-up and top-down emission estimates of hydrofluorocarbons (HFCs) in different parts of the world [J]. Chemosphere, 2021, 283: 131208. doi: 10.1016/j.chemosphere.2021.131208
    [5] YI L Y, WU J, AN M D, et al. The atmospheric concentrations and emissions of major halocarbons in China during 2009-2019 [J]. Environmental Pollution, 2021, 284: 117190. doi: 10.1016/j.envpol.2021.117190
    [6] GLIGOROVSKI S, STREKOWSKI R, BARBATI S, et al. Environmental implications of hydroxyl radicals ((•)OH) [J]. Chemical Reviews, 2015, 115(24): 13051-13092. doi: 10.1021/cr500310b
    [7] SUN X Y, HU Y M, XU F, et al. Mechanism and kinetic studies for OH radical-initiated atmospheric oxidation of methyl propionate [J]. Atmospheric Environment, 2012, 63: 14-21. doi: 10.1016/j.atmosenv.2012.08.045
    [8] LIAO Z H, ZENG M, WANG L M. Atmospheric oxidation mechansim of polychlorinated biphenyls (PCBs) initiated by OH radicals [J]. Chemosphere, 2020, 240: 124756. doi: 10.1016/j.chemosphere.2019.124756
    [9] SHI X L, ZHANG R M, LI Y F, et al. Mechanism theoretical study on OH-initiated atmospheric oxidation degradation of dimethoate [J]. Journal of Molecular Structure, 2018, 1163: 61-67. doi: 10.1016/j.molstruc.2018.02.104
    [10] HOLTOMO O, NGUE'ZEO H, NSANGOU M, et al. Theoretical investigation of the atmospheric implication for the reaction of OH radical with CF2C(CH3)-CX3, X = H, F [J]. Journal of Molecular Graphics and Modelling, 2021, 106: 107905. doi: 10.1016/j.jmgm.2021.107905
    [11] GUPTA P, RAJAKUMAR B. A theoretical insight on the kinetics for the reaction of (E)-/ (Z)-CHF=CF(CF2)x=1, 2CF3 with OH radicals under tropospheric conditions [J]. Journal of Fluorine Chemistry, 2019, 222/223: 31-45. doi: 10.1016/j.jfluchem.2019.04.009
    [12] JABEEN F, KUMAR A, RAJAKUMAR B. Kinetics, thermochemistry and atmospheric implications for the reaction of OH radicals with CH3CF = CF2 (HFO-1243yc) [J]. Chemical Physics Letters, 2020, 758: 137933. doi: 10.1016/j.cplett.2020.137933
    [13] GOGOI P, PAUL S, MISHRA B K, et al. Tropospheric oxidation of 1H-heptafluorocyclopentene (cyc-CF2CF2CF2CF═CH–) with OH radicals: Reaction mechanism, kinetics, and global warming potentials [J]. ACS Earth and Space Chemistry, 2021, 5(7): 1792-1800. doi: 10.1021/acsearthspacechem.1c00124
    [14] XU C, WANG C Y, LI B, et al. Theoretical study on the reaction mechanism of OH radical with Z(E)-CF3CH CHF [J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1367-1374. doi: 10.1039/C8CP06647G
    [15] HSU K J, DEMORE W B. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements [J]. The Journal of Physical Chemistry, 1995, 99(4): 1235-1244. doi: 10.1021/j100004a025
    [16] CHEN L, UCHIMARU T, KUTSUNA S, et al. Kinetics study of gas-phase reactions of erythro/threo-CF3CHFCHFC2F5 with OH radicals at 253-328 K [J]. Chemical Physics Letters, 2010, 488(1/2/3): 22-26.
    [17] TOKUHASHI K, TAKIZAWA K, KONDO S. Rate constants for the reactions of OH radicals with fluorinated ethenes: Kinetic measurements and correlation between structure and reactivity [J]. The Journal of Physical Chemistry. A, 2018, 122(19): 4593-4600. doi: 10.1021/acs.jpca.7b11653
    [18] ANDERSEN M P S, NIELSEN O J, TOFT A, et al. Atmospheric chemistry of CxF2x + 1CHCH2 (x = 1, 2, 4, 6, and 8): Kinetics of gas-phase reactions with Cl atoms, OH radicals, and O3 [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005, 176(1/2/3): 124-128.
    [19] SUTCLIFFE B T, WOOLLEY R G. On the quantum theory of molecules [J]. The Journal of Chemical Physics, 2012, 137(22): 22A-544A.
    [20] KÜHNE T D, IANNUZZI M, del BEN M, et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations [J]. The Journal of Chemical Physics, 2020, 152(19): 194103. doi: 10.1063/5.0007045
    [21] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals [J]. Theoretical Chemistry Accounts, 2008, 120(1): 215-241.
    [22] DUNNING T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen [J]. The Journal of Chemical Physics, 1989, 90(2): 1007-1023. doi: 10.1063/1.456153
    [23] FRISCH M, TRUCKS G, SCHLEGEL H, et al. Gaussian 09, rev[CP]. Gaussian Inc, Wallingford, 2009
    [24] LI C, XIE H B, CHEN J W, et al. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH: Overcoming the difficulty in experimental determination [J]. Environmental Science & Technology, 2014, 48(23): 13808-13816.
    [25] CHAI J D, HEAD-GORDON M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections [J]. Physical Chemistry Chemical Physics, 2008, 10(44): 6615-6620. doi: 10.1039/b810189b
    [26] WEIGEND F. Accurate Coulomb-fitting basis sets for H to Rn [J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065. doi: 10.1039/b515623h
    [27] FERNANDEZ-RAMOS A, ELLINGSON B A, GARRETT B C, et al. Variational transition state theory with multidimensional tunneling[M]//Reviews in Computational Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 2007: 125-232.
    [28] WIGNER E. The transition state method [J]. Transactions of the Faraday Society, 1938, 34: 29-41. doi: 10.1039/tf9383400029
    [29] DOUBLEDAY C, ARMAS R, WALKER D, et al. Heavy-atom tunneling calculations in thirteen organic reactions: Tunneling contributions are substantial, and Bell's formula closely approximates multidimensional tunneling at ≥250 K [J]. Angewandte Chemie (International Ed. in English), 2017, 56(42): 13099-13102. doi: 10.1002/anie.201708489
    [30] SKODJE R T, TRUHLAR D G. Parabolic tunneling calculations [J]. The Journal of Physical Chemistry, 1981, 85(6): 624-628. doi: 10.1021/j150606a003
  • 加载中
图( 3) 表( 3)
计量
  • 文章访问数:  1598
  • HTML全文浏览数:  1598
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-05-05
  • 录用日期:  2022-06-24
  • 刊出日期:  2023-10-27
丁保君, 姜琦, 夏德铭, 马芳芳, 陈景文. 气相氢氟烃和氢氟烯烃与·OH反应的量子化学计算方法筛选[J]. 环境化学, 2023, 42(10): 3256-3264. doi: 10.7524/j.issn.0254-6108.2022050501
引用本文: 丁保君, 姜琦, 夏德铭, 马芳芳, 陈景文. 气相氢氟烃和氢氟烯烃与·OH反应的量子化学计算方法筛选[J]. 环境化学, 2023, 42(10): 3256-3264. doi: 10.7524/j.issn.0254-6108.2022050501
DING Baojun, JIANG Qi, XIA Deming, MA Fangfang, CHEN Jingwen. Screening of quantum chemical method for the reactions of hydrofluorocarbons and hydrofluoroolefins with ·OH in the Atmosphere[J]. Environmental Chemistry, 2023, 42(10): 3256-3264. doi: 10.7524/j.issn.0254-6108.2022050501
Citation: DING Baojun, JIANG Qi, XIA Deming, MA Fangfang, CHEN Jingwen. Screening of quantum chemical method for the reactions of hydrofluorocarbons and hydrofluoroolefins with ·OH in the Atmosphere[J]. Environmental Chemistry, 2023, 42(10): 3256-3264. doi: 10.7524/j.issn.0254-6108.2022050501

气相氢氟烃和氢氟烯烃与·OH反应的量子化学计算方法筛选

    通讯作者: E-mail:dingbj@dlut.edu.cn
  • 1. 大连理工大学化工学院,大连,116024
  • 2. 工业生态与环境工程教育部重点实验室,大连市化学品风险防控及污染防治技术重点实验室,大连理工大学环境学院,大连,116024
基金项目:
国家重点研究发展计划(2018YFC1801604,2018YFE0110700)和国家自然科学基金(22136001)资助

摘要: 氢氟烃 (HFCs)和氢氟烯烃 (HFOs)常被用作氢氯氟烃的替代物. 为评估HFCs和HFOs是否可以理想替代氢氯氟烃,需要对其大气转化进行充分研究,尤其需要充分了解其大气持久性的信息. 目前用于评估化学品大气持久性的重要参数气相羟基自由基(·OH)二级反应速率常数(kOH)的数据量尚不能满足多种HFCs和HFOs的评估. 因此有必要发展能够快速预测kOH的方法. 量子化学计算方法具有高效、准确的优点,是预测kOH的重要手段. 然而目前研究使用的量子化学方法纷繁复杂,亟需筛选适合HFCs和HFOs的量子化学方法. 本研究基于3种HFCs(CF3CF2H、CF3CH2CF3和CF3CF2(CHF)2CF3)和2个HFOs(CF2CH2和CF3CH2CF3)的实验数据,从多种热力学参数计算方法和动力学计算方法中筛选适用于计算HFCs和HFOs气相kOH的方法. 研究结果表明,通过对比lgkOH的实测值与不同计算方法所得计算值之间的平均绝对误差(MAE),利用Skodje-Truhlar隧道效应校正系数 (κS)修正传统过渡态理论(TST),再结合M06-2X-D3/def2-TZVP//M06-2X/cc-pVDZ水平的密度泛函理论(DFT)计算HFCs的kOH效果最好,其MAE值为0.17;采用Wigner隧道效应校正系数 (κW)修正的TST结合M06-2X-D3/aug-cc-pVTZ//M06-2X/cc-pVDZ (MAE = 0.50)的方法计算HFOs的kOH效果最好;而κS修正TST的M06-2X-D3/aug-cc-pVTZ//M06-2X/cc-pVDZ (MAE = 0.34)或M06-2X-D3/jul-cc-pVTZ//M06-2X/cc-pVDZ (MAE = 0.35)方法都适用于计算HFCs和HFOs的kOH. 本研究筛选的方法为快速、准确计算HFCs和HFOs的kOH及评估其大气持久性提供了方法支撑.

English Abstract

  • 氢氯氟烃 (HCFCs)曾被广泛地应用到空调、制冷、泡沫、气溶胶推进剂和阻燃剂等多个领域[1-2]. 因HCFCs会破坏臭氧层,被《蒙特利尔议定书》列为受控物质[3],所以一些化合物常被用来替代HCFCs[4],其中以氢氟烃类(HFCs)和氢氟烯烃类(HFOs)为代表化合物. 在过去几年中,这些替代物的排放量呈现快速增长的势头,并不断释放到大气中[4-5]. 为评估这些替代物是否为HCFCs的理想替代,在这些化合物进入大气对流层之前,需要充分了解其大气氧化机制的完整信息,尤其是大气持久性.

    大气中的·OH具有强氧化性和低选择性,是很多污染物氧化降解的关键物种[6],因此污染物与·OH反应的二级反应速率常数(kOH, cm3·molecule−1·s−1)是评价污染物大气持久性的重要参数. 传统的kOH实验测定方法耗时耗力,亟待发展新的方法获取HFCs和HFOs的kOH. 近年来,计算机软件、硬件的飞速提升和量子化学理论的不断发展,尤其是密度泛函理论(DFT),可直接从分子结构出发实现kOH从头计算. 采用适当的量子化学计算方法不仅速度快而且结果可以媲美实验值,因此有望在kOH的快速获取方面发挥重要作用,从而有助于评估污染物的大气持久性. 近年来,探究·OH引发气相污染物降解的反应机制和动力学的研究逐渐增多,包括丙酸甲酯[7]、多氯联苯[8]、农药[9]等.

    此外,也不乏利用量子化学方法探究HFCs和HFOs大气转化机制的研究,这些研究涉及M06-2X/6-311++G(df,p)//6-31+G(df,p)、MP2/cc-pVDZ、M11/6-311++G(d,p)等多种DFT方法,和过渡态理论(TST)、正则变分过渡态理论、变分过渡态理论等多种kOH计算方法[10-14]. 然而,目前量子化学计算的研究均以探究大气转化机制为主要目标,而kOH作为大气转化过程中的一个参数很少有人系统研究其计算方法. 这些研究使用的量子化学方法通常仅针对单个HFCs或HFOs,对其它HFCs或HFOs是否适用仍未可知.

    本研究考察了碳链长度、官能团位置等因素,选择3个HFCs:1,1,1,2-四氟乙烷(CF3CFH2)、1,1,1,3,3,3-六氟丙烷(CF3CH2CF3)、2H,3H-十氟戊烷(C2F5(CHF)2CF3)和2个HFOs:1,1-二氟乙烯(CF2=CH2)、1H,1H,2H-十七氟-1-葵烯(CF3(CF2)7CH2=CH2)作为模型化合物,以其kOH实测值为参考,筛选适用于计算HFCs和HFOs气相kOH值的量子化学方法. 将不同的方法计算所得kOH与实测值进行比较,发展关于HFCs和HFOs的高准确性和适用性的kOH计算方法.

    • 为使筛选的计算方法能够广泛应用于HFCs和HFOs的气相kOH计算,本研究从文献已报道kOH的HFCs和HFOs中,根据碳链长度和官能团位置的不同,筛选出CF3CFH2[15]、CF3CH2CF3[15]、C2F5(CHF)2CF3[16]共3个HFCs和CF2=CH2[17]、CF3(CF2)7CH2=CH2[18]共2个HFOs作为模型化合物,用于筛选合适的计算方法,其结构如图1所示.

    • 由于在大气中HFCs和HFOs存在多种构象,不同构象与·OH的反应性不同,因此采用波恩奥本海默分子动力学(BOMD)[19]模拟和量子化学计算相结合的方法来获得目标化合物的最稳定构象. BOMD模拟使用CP2K 8.2.0[20]软件包,NVT系综,利用Nose-Hoover控温方法将温度稳定在300 K,利用BLYPD3/DZVP-GTH方法计算5000步,步长为0.5 fs. 从模拟的动力学轨迹中选取多种能量较低的构象,然后使用M06-2X[21]/cc-pVDZ[22]计算方法对结构进行优化,最终选取能量最低的构象作为目标化合物的最稳定构象,用来考察它与·OH的反应,最低能量构象如图1所示. 量子化学计算在Gaussian 09[23]软件包中进行.

    • M06-2X泛函已证明能够很好地用于研究氢夺取反应[21, 24],因此,本研究中所有反应涉及的反应物、反应前络合物、过渡态、反应后络合物和产物均采用M06-2X/cc-pVDZ计算水平进行结构优化. 此外,通过M06-2X/cc-pVDZ方法计算内禀反应坐标验证过渡态的准确性.

      对于单点能的计算,选用2种能够考察色散作用的泛函(M06-2X-D3和ωB97X-D)[25]与8种3-zeta基组(aug-cc-pVTZ、may-cc-pVTZ、jun-cc-pVTZ、jul-cc-pVTZ、def2-TZVP、def2-TZVPP、pcseg-2和MG3S)[22, 26]进行组合,总计16种计算方法.

    • 本研究采用TST[27]计算模型化合物的每条反应通道的kOH

      式中,κ代表隧道效应修正系数; σ代表反应简并度;h代表普朗克常数(6.626 × 10−34 J·s);T代表温度(K);kB代表玻尔兹曼常数(1.381 × 10−23 J·K−1);R代表摩尔气体常数(8.314 J·mol−1·K−1);P0代表大气压强(105 Pa);∆G‡,0代表标准活化自由能(kJ·mol−1),为过渡态吉布斯自由能减去反应物吉布斯自由能;对于双分子反应∆n为1,模型化合物HFCs和HFOs的kOH为此物质所有反应通道kOH之和.

      对于κ的值,选择两种方法:(Wigner隧道效应校正系数(κW[28]和Skodje-Truhlar隧道效应校正系数(κS[29-30])进行计算,进而筛选出最合适的计算κ的方法.

      κW的计算公式如下:

      式中,υi是TS的虚频(cm−1).

      κS的计算方法如下:

      α > β时:

      α = β时:

      α < β时:

      其中,∆V为势垒高度(kJ·mol−1),∆E为过渡态减去反应物的能量(kJ·mol−1),当∆E > 0 kJ·mol−1时,∆V为0 kJ·mol−1;反之,∆V为产物减去反应物的能量.

    • 理论上,·OH与HFCs、HFOs可以发生夺H原子或F原子的反应,还可以在不饱和键发生·OH加成反应. 前人在研究CF2=C(CH3)CF3、CF2=C(CH3)2、1H-七氟环戊烯与·OH的反应中发现·OH难以夺取F原子[10, 13],因此本研究仅考虑·OH夺取HFCs和HFOs上的H原子. 对于3个HFCs,其反应机理仅为夺取C原子上的H原子. 由于H原子的位置可能会影响·OH夺取能力,所以选择CF3CFH2、CF3CH2CF3以及C2F5(CHF)2CF3作为模型化合物. 考虑到CF3CFH2最低构象具有Cs对称性,与·OH反应仅计算1条氢夺取途径. 而C2F5(CHF)2CF3和CF3CH2CF3分子的最低构象不具备对称性,需考虑所有的氢夺取反应途径. 对于HFOs,·OH与其反应机理包括H夺取和·OH加成. 考虑到CF2=CH2和CF3(CF2)7CH2=CH2分子的对称性,两者与·OH反应分别考虑3条(1条氢夺取+2条·OH加成)和6条(3条氢夺取+3条·OH加成)反应途径,所有模型化合物与·OH反应的反应途径见图2.

      表1给出了在不同方法下计算的模型化合物的kOH值. 可以看出,CF3CF2H、 CF3CH2CF3、CF3CF2(CHF)2CF3、CF2CH2和CF3CH2CF3kOH范围分别为6.79 × 10−16 — 4.93 × 10−14 cm3·molecule−1·s−1、8.47 × 10−17 — 5.99 × 10−15 cm3·molecule−1·s−1、2.10 × 10−15 — 5.65 × 10−14 cm3·molecule−1·s−1、4.81 × 10−13 — 8.90 × 10−11 cm3·molecule−1·s−1;7.27 × 10−14 — 1.08 × 10−11 cm3·molecule−1·s−1. 它们对应的大气半减期范围分别为:0.40 — 29.00 a;3.29 — 232.83 a;0.34 — 9.39 a;0.08 — 14.76 d;0.65 — 97.66 d. 表明不同计算方法对HFCs和HFOs的kOH值和持久性评估的影响较大. 此外,HFOs的kOH值普遍大于HFCs的kOH值的研究结果表明在对流层条件下,HFOs与·OH反应更快,更容易被·OH氧化去除.

    • 表2列出了HFCs和HFOs实测与计算的lgkOH平均绝对误差(MAE),当MAE值小于0.500时认为方法预测的kOH的效果较好. 对于HFCs,ωB97X-D结合κS修正的TST的效果不理想(MAE的范围为0.692 — 1.003);M06-2X-D3结合κS修正的TST方法更具优势,其MAE值均小于0.250. 其中,采用基组def2-TZVP(MAE = 0.169)、may-cc-pVTZ (MAE = 0.170)、jun-cc-pVTZ (MAE = 0.178)、def2-TZVPP (MAE = 0.182)、jul-cc-pVTZ (MAE = 0.193)和aug-cc-pVTZ (MAE = 0.197)计算方法效果更优. 因此,当计算·OH和HFCs的反应时,建议使用上述修正TST和计算单点能的方法计算HFCs的kOH值. 对于HFOs,M06-2X-D3结合aug-cc-pVTZ基组计算单点能,并采用κW修正的TST计算kOH,得到的lgkOH的MAE最小(0.497). 因此,建议使用κW修正的TST方法结合M06-2X-D3/aug-cc-pVTZ//M06-2X/cc-pVDZ计算HFOs的kOH值.

      对比所有模型化合物(3个HFCs和2个HFOs)lgkOH的MAE值,发现M06-2X-D3和ωB97X-D泛函结合不同基组得到的lgkOH的MAE范围分别为0.34—0.78和0.51—1.11. κS修正的TST方法结合M06-2X-D3泛函计算单点能的MAE值范围为0.34—0.50,均≤0.500. 按照MAE值排序,利用κS修正TST的动力学方法结合不同单点能计算方法中,最优的2种方法分别为结合M06-2X-D3/aug-cc-pVTZ (MAE = 0.34)和结合M06-2X-D3/jul-cc-pVTZ (MAE = 0.35). κW修正TST的动力学方法结合不同单点能计算方法中,最优的2种方法分别为结合M06-2X-D3/aug-cc-pVTZ (MAE = 0.47)和结合M06-2X-D3/jul-cc-pVTZ (MAE = 0.49). 因此,本研究推荐κS修正的M06-2X-D3/aug-cc-pVTZ//M06-2X/cc-pVDZ或者M06-2X-D3/jul-cc-pVTZ//M06-2X/cc-pVDZ方法计算HFCs和HFOs的kOH.

    • 表3为筛选出分别适用于HCFs和HFOs的计算方法、计算得到的反应的热力学和动力学参数,其中HCFs的∆V均为0 kJ·mol−1. 对于3种HFCs,可以看出·OH 夺取HFCs上的H原子时,焓变(ΔH)均小于0 kJ·mol−1,表明反应可自发进行. 然而由于Δ E较高(12.75—23.16 kJ·mol−1),在298 K条件下反应很难发生. 表明HFCs可能在大气中持久存在. 此外,对比3种HFCs (CF3CH2F、CF3CH2CF3和CF3CF2(CHF)2CF3)的kOH值,可以看出碳链长度对HFCs的kOH几乎没有影响.

      对于2种HFOs,可以看出所有反应的ΔH值小于0 kJ·mol−1,表明反应是放热反应. 而H夺取反应途径的ΔE值明显高于加成反应,表明·OH加成反应是·OH与2种HFOs反应的主要反应通道. 对比动力学数据,CF2=CH2和CF3(CF2)7CH2=CH2双键加成的产物分支比分别为99.99%和99.96%,同样证明双键加成是主要的反应机制. 此外,双键加成(3d, 4d)和(5d, 6d)反应通道的kOH值分别为3.76 × 10−13 cm3 ·molecule−1·s−1和4.00 × 10−13 cm3·molecule−1·s−1,说明—CF2和—CH2kOH的影响较小. 值得注意的是,·OH加成到CF3(CF2)7CH2=CH2双键不同位置上时,其kOH的值也有明显不同. 5e的kOH为(1.74 × 10−13 cm3·molecule−1·s−1)明显高于4e (7.76 × 10−15 cm3·molecule−1·s−1)和6e (2.04 × 10−15 cm3·molecule−1·s−1)反应通道. 5e反应通道的产物分支比为94.62%,这表明·OH更容易与CF3(CF2)7CH2=CH2以5e的反应通道反应. 如图3中4e、5e和6e的过渡态所示,·OH在加成过程中,可能受到碳链上F原子空间位阻的影响.

    • 本研究以5个HFCs、HFOs的kOH实测值作为参照,从16种单点能计算方法和2种动力学计算方法中筛选适合HFCs和HFOs的kOH值的热力学和动力学参数的计算方法. 以MAE作为检验计算方法效果的标准,HFCs推荐使用κS修正TST结合M06-2X-D3/def2-TZVP//M06-2X/cc-pVDZ方法计算kOH;HFOs推荐使用κW修正TST结合M06-2X-D3/aug-cc-pVTZ//M06-2X/cc-pVDZ方法计算kOH;推荐使用κS修正TST方法结合的M06-2X-D3/aug-cc-pVTZ//M06-2X/cc-pVDZ或M06-2X-D3/jul-cc-pVTZ//M06-2X/cc-pVDZ方法计算HFCs、HFOs的kOH. 此研究筛选了适用于计算HFCs和HFOs的kOH值的量子化学方法,为高效、准确预测HFCs和HFOs的kOH和评估其大气持久性提供了方法支撑.

    参考文献 (30)

返回顶部

目录

/

返回文章
返回