-
随着铁路深埋隧道需求量的增加,高温高氟地下水涌出问题越来越突出,如果施工过程中产生的高温高氟废水处理不当,不仅会对当地环境造成严重影响[1],还会对当地居民的饮用水安全造成隐患[2]。氟是人体内必需的微量元素之一,人体日常饮用水的含氟量为0.4~0.6 mg·L−1[3],当超过人体正常需求量时,会引起全身性中毒疾病(即地氟病)。世界卫生组织(WHO)规定,饮用水中氟离子质量浓度上限为1.5 mg·L−1。长期接触和摄入高剂量(>1.5 mg·L−1)的氟化物会导致氟斑牙、免疫缺陷等疾病[4],甚至可能损害神经系统、内分泌系统、生殖系统、肝脏等的功能,从而对人体健康产生危害,还会影响食物链和生态系统的平衡[5]。因此,控制高氟水中氟的含量对保护自然环境和人体健康具有十分重要的意义。
目前处理含氟废水方法主要有沉淀法[6]、膜分离法[7]、离子交换法[8]和吸附法[9]。吸附法因材料成本低、操作条件可控、不产生2次污染、具有再利用潜力和再生可能性等优点[10],被认为是目前应用最广泛的除氟方法。国内外常用的吸附剂有活性氧化铝[11]、活性炭[12]、活性锯末[13]、活性椰壳炭[14]、骨炭[15]、细菌[16]、土壤吸附剂[17]、稀土氧化物[18]、活性粘土[19]、赤泥、废催化剂和飞灰等固体工业废物[20-21]、生物炭[22-23]、钢渣[24]等,其中钢渣具有来源丰富、成本低廉、疏松多孔、耐腐蚀抗冲刷等优点,可作为一种优异的环境功能除氟材料。但钢渣自身的物理性质和化学活性低的性能限制了其吸附性能,需制备一种新型且高效的改性钢渣吸附剂用以处理隧道施工排放的高氟废水。
张龙强[25]利用钢渣做吸附剂,研究了其对水中的铅离子和铬离子的吸附特征,结果表明,初始pH和温度对钢渣吸附重金属离子的影响不大,且钢渣能够适应废水的变化。张峻搏[26]以钢渣为原料对其进行改性,制备出一种多层状金属氢氧化物,研究其对含磷废水的吸附效果,结果表明,钢渣对生物池出水和湿地系统中总磷的去除率较高。纪鹏华[27]以钢渣为基材,通过添加改性剂、粘接剂和扩孔剂对钢渣进行改性,制备出具有易于分离且除磷效果好等优点的吸附剂。刘平[28]利用盐酸和硫酸对钢渣进行改性,发现利用改性钢渣除氟时,可以有效的提高钢渣的除氟效率,但相较于其他材料,除氟效果稍差(吸附容量为0.86 mg·g−1)。基于此,本研究采用与硬碱的氟离子具有强配位能力的硬酸La3+对钢渣进行改性,制备一种新型高效除氟吸附剂,并探究改性钢渣吸附水中氟离子的热力学和动力学性能,以期最大限度地发挥钢渣资源的回收利用价值。
镧改性钢渣对水中氟离子的吸附性能
Adsorption performance of lanthanum-modified steel slag towards fluoride ion in water
-
摘要: 为有效去除铁路隧道开挖过程中涌出的地下水中的氟离子,避免对当地环境和居民身体健康造成危害,利用镧改性钢渣得到一种除氟材料,通过扫描电镜、比表面积测定、能量散射光谱、X射线衍射及傅里叶红外光谱等方法对材料进行表征。此外,结合吸附热力学和吸附动力学模型拟合,探究了改性钢渣对水中氟离子的吸附机理。结果表明:改性钢渣的比表面积由未改性的0.549 9 m2·g−1增大到23.367 5 m2·g−1,小粒径的钢渣比例增大且表面粗糙程度增强。能谱分析表明通过改性,可成功的将镧负载于钢渣表面。吸附拟合模型表明,钢渣对氟离子的吸附遵循Langmuir模型,说明钢渣对氟离子的吸附更接近于单层吸附,且主要为化学吸附。热力学参数表明,吸附吉布斯自由能(∆G0)>0,焓变(∆H0)和熵变(∆S0)<0,表明该反应是放热过程,改性钢渣的除氟过程符合伪二级动力学过程。改性钢渣有望成为一种具有应用前景的除氟材料。Abstract: To effectively remove fluoride ions in the groundwater gushed from Sichuan-tibet railway tunnel excavation process, and avoid the harm to the local environment and physical health of residents, a new type of fluoride removal material was prepared by using lanthanum modified steel slag. Scanning electron microscope and the measurement of specific surface area analysis, X-ray energy spectrum were used to characterize the material. The adsorption mechanism of fluoride ions in water by modified steel slag was investigated by adsorption thermodynamics and kinetics model fitting. The results showed that the specific surface area of modified steel slag increased from 0.5499m2·g−1 of unmodified steel slag to 23.3675 m2·g−1, the proportion of steel slag with small particle size and the surface roughness increased. Energy spectrum analysis showed that lanthanum could be successfully loaded on the surface of steel slag by modification. The adsorption fitting model showed that the adsorption of fluoride ions by steel slag followed the Langmuir model, indicating that the adsorption process was closer to monolayer one, and was dominated by chemical adsorption. Thermodynamic parameters showed that the adsorption Gibbs free energy (∆G0) was greater than 0, enthalpy change (∆H0) and entropy change (∆S0) were lower than 0, indicating that the reaction was an exothermic and entropy reduction process, and the fluorine removal process by modified steel slag fitted well with the pseudo second-order kinetics process. Modified steel slag is expected to be a kind of fluoride removal material with a good application prospect.
-
Key words:
- slag /
- lanthanum /
- fluoride removal /
- character
-
表 1 改性前后钢渣的元素组成及百分含量
Table 1. Elemental composition of steel slags before and after modification %
样品 C O Mg Al Si K Ca Ti Mn Fe La 改性前 14.15 35.75 3.87 4.39 9.09 0.55 20.77 8.29 1.02 2.11 — 改性后 45.85 — 13.93 27.73 3.57 0.86 2.66 2.78 — — 2.78 表 2 吸附等温线模型拟合参数
Table 2. Fitting parameters of adsorption isotherm model
温度/ ℃ Langmuir Freundlich Temkin qmax/(mg·g−1) B/(L·mg−1) R2 1/n KF/(mg·g−1) R2 aT/(L·g−1) bT/(kJ·mol−1) R2 30 0.980 0.661 0.970 0.277 0.365 0.893 9.662 15.048 0.961 2 45 1.230 0.287 0.991 0.394 0.326 0.970 5.719 12.301 0.971 3 60 1.101 0.279 0.971 0.369 0.294 0.976 6.764 15.113 0.968 4 表 3 热力学参数计算结果
Table 3. Calculation results of thermodynamic parameters
吸附剂 温度/K Ka/(mL·g−1) (kJ·mol−1)$ \Delta {G}^{0}/ $ kJ·mol−1)$ \Delta {H}^{0}/( $ kJ·(mol·K)−1)$ \Delta {S}^{0}/( $ 改性钢渣 303.15 0.661 1.043 −23.804 30.68 318.15 0.287 3.302 333.15 0.279 3.536 未改性钢渣 303.15 1.202 −0.009 −0.083 −1.038 2 318.15 4.404 −3.921 333.15 1.459 −3.124 表 4 吸附动力学模型参数
Table 4. Parameters of adsorption kinetics model
初始氟浓度/(mg·L−1) 伪一级动力学 伪二级动力学 qe1/(mg·g−1) k1/min−1 R2 qe2/(mg·g−1) k2/(g·(mg·min)−1) R2 10 0.002 −0.000 479 0.017 0.062 −4.293 0.999 7 50 0.015 −0.000 762 0.113 0.262 −20.872 1 100 0.069 −0.000 108 0.067 0.474 76.858 0.999 9 -
[1] 王贵玲, 张发旺, 刘志明. 国内外地热能开发利用现状及前景分析[J]. 地质学报, 2000, 21(2): 134-139. doi: 10.3321/j.issn:0001-5717.2000.02.005 [2] 刘伟. 西藏典型高温水热系统水文地球化学及地热利用引发的水污染问题[D]. 武汉: 中国地质大学, 2008. [3] 李克斌, 唐兴礼, 国丽, 等. 载镧壳聚糖去除水中氟离子的吸附特性研究[J]. 湖南科技大学学报. (自然科学版), 9, 24(3): 113-117.
[4] 雅茹, 陈姝璇, 奥妮琪, 等. 水中氟离子去除方法的研究进展[J]. 三峡生态环境监测, 2022, 7(3): 1-13. [5] HE J, YANG Y, WU Z, et al. Review of fluoride removal from water environment by adsorption[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104516. doi: 10.1016/j.jece.2020.104516 [6] 李永富, 孟范平, 姚瑞华. 饮用水除氟技术开发应用现状[J]. 水处理技术, 2010, 36(7): 10-13. doi: 10.16796/j.cnki.1000-3770.2010.07.004 [7] 王月. 一种新型纳米氧化铝材料净水效果的初步研究[D]. 长春: 吉林大学, 2006. [8] 邹雄, 杨大锦, 刘俊场, 等. 硫酸锌溶液离子交换除氟氯工业化试验[J]. 有色金属(冶炼部分), 2021(11): 11-14. [9] 付娆, 张文龙, 冯江涛, 等. 锐钛矿型二氧化钛的低温合成及其吸附除氟性能的研究[J]. 环境工程, 2020, 38(2): 70-76. doi: 10.13205/j.hjgc.202002009 [10] DHANASEKARAN P, SAI P M S, GNANSEKAR K I. Fixed bed adsorption of fluoride by Artocarpus hirsutus based a dsorbent[J]. Journal of Fluorine Chemistry, 2017(195): 37-46. [11] MILLAR G J, COUPERTHWAITE S J, DAWES L A, et al. Activated alumina for the removal of fluoride ions from high alkalinity groundwater: New insights from equilibrium and column studies with multicomponent solutions[J]. Separation and Purification Technology, 2017, 187: 14-24. doi: 10.1016/j.seppur.2017.06.042 [12] RAVULAPLLI S, KUNTA R. Defluoridation studies using active carbon derived from the barks of Ficus racemosa plant[J]. Journal of Flourine Chemistry, 2018, 193: 58-66. [13] YE C, YAN B, JI X, et al. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: experimental and modeling[J]. Ecotoxicology Environment Safety, 2019, 180: 366-373. doi: 10.1016/j.ecoenv.2019.04.086 [14] CHOONG C E, WONG K T, JANG S B, et al. Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: implications for their application in water treatment[J]. Chemosphere, 2019, 239: 124765. [15] ALKURDI S S A, Al-JUBOORI R A, BUNDSCHUH J, et al. Bone char as a green sorbent for removing health threatening fluoride from drinking water[J]. Environment International, 2019, 127: 704-719. doi: 10.1016/j.envint.2019.03.065 [16] TCHOMGUI-KAMGA E, ALONZO V, NANSEU-NJIKI C P, et al. Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water[J]. Carbon, 2009, 48(2): 333-343. [17] WAMBU E W, AMBUSSO W O, ONINDO C, et al. Review of fluoride removal from water by adsorption using soil adsorbents – an evaluation of the status[J]. Journal of Water Reuse and Desalination, 2016, 6(1): 1-29. doi: 10.2166/wrd.2015.073 [18] RAICHUR A, BASU M. Adsorption of fluoride onto mixed rare earth oxides[J]. Separation and Purification Technology, 2001, 24(1/2): 121-127. [19] AGARWAL M, RAI K, SHRIVASTAV R, et al. Defluoridation of water using amended clay[J]. Journal of Cleaner Production, 2003, 11(4): 439-444. doi: 10.1016/S0959-6526(02)00065-3 [20] CENGELOGLU Y, KIR E, ERSOZ M. Removal of fluoride from aqueous solution by using red mud[J]. Separation and Purification Technology, 2002, 28(1): 81-86. doi: 10.1016/S1383-5866(02)00016-3 [21] PIEKOS R, PASLAWSKA S. Fluoride uptake characteristic of fly ash[J]. Flouride, 1999, 32(1): 14-19. [22] 李春鹭. 聚吡咯负载花生壳质生物质炭去除水中氟的研究[D]. 北京: 中国地质大学, 2017. [23] 王建国. 镧改性柚子皮生物碳除氟性能及机理研究[D]. 北京: 中国地质大学, 2018. [24] SCOTT I S P C, PENN C J. Estimating the variability of steel slag properties and their influence in phosphorus removal ability[J]. Chemosphere, 2021, 276: 130205. doi: 10.1016/j.chemosphere.2021.130205 [25] 张龙强. 钢渣处理含铅、镉废水的性能研究[D]. 南京: 南京理工大学, 2015. [26] 张峻搏. 钢渣对含磷废水及染料废水的吸附性能及应用研究[D]. 石家庄: 河北科技大学, 2020. [27] 纪鹏华. 钙/铝改性钢渣陶粒的制备及其除磷性能的研究[D]. 保定: 河北大学, 2017. [28] 刘平. 含氟废水的吸附处理研究[D]. 南宁: 广西大学, 2005. [29] TCHOMGUI-K E, ALONZO V, NANSEU-NJIKI C P, et al. Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water[J]. Carbon, 2010, 48(2): 333-343. doi: 10.1016/j.carbon.2009.09.034 [30] 陈琼. 改性钢渣去除铀(VI)的实验研究[D]. 南华: 南华大学, 2020. [31] 胡家朋, 刘瑞来, 林皓, 等. 改性羟基磷灰石制备及除氟特性研究[J]. 人工晶体学报, 2019, 48(1): 81-89. doi: 10.16553/j.cnki.issn1000-985x.2019.01.014 [32] 冯珊珊, 汪凯举, 章蓝月, 等. 钢渣对Ni~(2+)与Cu~(2+)的竞争吸附研究[J]. 硅酸盐通报, 2022, 41(5): 1750-1757. [33] 牛晨雨. 铁氧化菌改性钢渣水体除砷性能研究[D]. 武汉: 武汉理工大学, 2018. [34] 卢明阳, 庞来学, 杨达, 等. 钢渣-煤基固废可控低强度材料制备及热力学分析[J]. 硅酸盐通报, 2022, 41(7): 2344-2351. doi: 10.16552/j.cnki.issn1001-1625.2022.07.024 [35] 罗智宏, 何峰, 张文涛, 等. 熔融法转炉钢渣微晶玻璃的结构与性能研究[J]. 人工晶体学报, 2018, 47(3): 514-521. doi: 10.3969/j.issn.1000-985X.2018.03.011 [36] 何环宇, 虎涛涛, 刘虹灵, 等. 钢渣-废FCC催化剂耦合制备地质聚合物及其性能表征[J]. 武汉科技大学学报, 2022, 45(2): 87-92. [37] 魏惠. 钢渣对磷的吸附与解吸特性及影响因素研究[D]. 郑州: 郑州大学, 2010. [38] 卢琪愿, 张卫民, 王玉罡. 钢渣负载纳米零价铁-羟基磷灰石的制备及其对锰的吸附性能[J]. 有色金属(冶炼部分), 2022(5): 86-94. [39] HAI N Y T, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review[J]. Water Research, 2017, 120(9): 88-116. [40] VAN L-N, SJOBERG V, NGOC P D, et al. Removal mechanism of arsenic (V) by stainless steel slags obtained from scrap metal recycling[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103833. doi: 10.1016/j.jece.2020.103833 [41] AHMADI S, MOHAMMADI L, RAHADR A, et al. Acid dye removal from aqueous solution by using Neodymium(III) oxide nanoadsorbents[J]. Nanomaterials, 2020, 10(3): 556. doi: 10.3390/nano10030556