-
温室气体CO2的大量排放导致全球气候变化,成为人类面临的重大挑战. 应对该挑战,我国做出了2030年“碳达峰”、2060年“碳中和”的郑重承诺和战略部署. 碳捕集、利用与封存技术(CCUS)是我国实现双碳目标的关键性技术之一[1],预计到2050年CCUS技术可减排11—27亿t CO2[2]. 因其环境友好和节约能源的特征,光催化CO2还原技术成为新兴CCUS技术. 光催化CO2还原技术利用太阳能和光催化剂在常温常压下将CO2转化成高附加值化学制品或燃料. 在CO2还原反应过程中,光催化剂受光激发产生光生电子-空穴,电子迁移至光催化剂表面,与吸附CO2发生还原反应,将其还原为CO、CH4、CH3OH等高能量密度的燃料[3-7]. 光催化剂是光催化CO2还原技术的核心,其活性决定CO2利用的性能及应用潜力.
近年来,通过添加助催化剂、元素掺杂、构建异质结等改性方法[8-10],光催化剂的催化效果有所提高. 但因光生电子-空穴易复合、主要生成C1产物等问题,其催化效率及选择性尚不满足实际需求[11]. 光催化剂也存在制备成本较高、人工合成经济性差等应用瓶颈. 相对而言,通过卡尔文循环、厌氧乙酰-辅酶A(Wood-Ljungdahl)等固碳途径,自然界部分自养微生物可以将CO2转化为C2及C2+等多碳产物,并具有自我复制及修复等独特优势. 由于微生物将固碳作用优先用于光合生长,而非合成代谢产物,其碳合成转化较低[12]. 构建光催化剂-微生物杂化体系有望突破传统光催化剂高成本、低选择性和天然固碳途径低转化效率等瓶颈,实现太阳能捕获、催化反应活性和选择性方面优势互补[13]. 在光催化剂-微生物杂化体系中,光激发半导体产生电子,电子被微生物膜上的转运蛋白转运到细胞内部[14],为天然固碳途径提供充足的还原力[15],从而利用CO2和太阳光生产高价值燃料和化学品,如图1所示.
相对于光催化技术及单独微生物的碳转化研究,半导体-微生物杂化体系的研究开展较晚. 自2016年杨培东课题组报道了硫化镉-热醋穆尔氏菌(CdS-Moorella thermoacetica)杂化体系[16],为之后光催化剂-微生物复合体系碳转化提供了更多思路和参考,但此领域的研究才开展几年时间. 目前,以杨培东[16]和Daniel G. Nocera[17]课题组为代表的美国研究团队在该领域处于领先地位,在《Science》等发表多篇论文,但国内在该新兴领域尚处于萌芽阶段[18-21]. 现有少量报道汇总了半导体-微生物杂化体系的演变、发展[22-23]及CdS-微生物复合体系的光电应用[24],但尚缺乏对不同光催化剂构建微生物复合体系及其碳转化应用的系统归纳、总结. 含金属、非金属基及复合光催化剂在化学组成、光吸收特性及光催化性能等方面存在巨大差异,将大大影响构建复合体系的性能.
本文分类总结了不同光催化剂构建的微生物复合体系(图2),说明复合体系中光催化剂的引入方法、光催化剂的作用途径及碳转化产物、效率等关键因素,以启发和指导杂化体系中光催化剂的选择及优化;光催化剂-微生物界面的电荷转移决定杂化体系效率,本文分析了这一关键问题,以促进光催化剂与微生物的深度耦合.
光催化剂应用于微生物复合碳转化体系的研究进展
Research progress of photocatalyst application in microorganism hybrid system for carbon conversion
-
摘要: 结合具有光激发特性的光催化剂和有特定生物固碳途径的微生物,构建光催化剂-微生物复合体系,将实现太阳能捕获、催化反应活性和选择性等方面的优势互补. 不同类型光催化剂在光吸收特性及光催化性能等方面存在巨大差异,本文总结了含金属、非金属基或复合光催化剂与微生物构成的复合碳转化体系,对比光催化剂引入方法、光催化剂作用途径及碳转化产物、效率等关键因素. 针对率先与微生物结合的CdS光催化剂,系统阐述了其生产乙酸、甲烷、C2+产物及复合改性的发展历程. 分析杂化体系界面电荷转移的关键基础,概括其研究方法、现有成果及存在问题等. 分析了应用于微生物复合碳转化体系光催化剂的面临挑战及发展趋势.Abstract: Combining photocatalysts with photo-excited properties and microorganisms with specific biological pathways for carbon fixation to construct the photocatalyst-microorganism hybrid system will achieve complementary advantages in solar energy capture, catalytic activity and selectivity. Different types of photocatalyst have huge differences in light absorption characteristic and photocatalytic performance. This paper summarized the hybrid systems for carbon conversion composed of metal containing, nonmetal-based, or composite photocatalysts with microorganisms, and compared key factors such as binding methods, photocatalyst action pathways, the products and efficiencies of carbon conversion. For CdS photocatalyst firstly combined with microorganisms, its development process for the generations of acetic acid, methane, C2+ products, and the process of composite modification were systematically expounded. The key basis of interfacial charge transfer for hybrid system was analyzed. The research methods, existing achievements and problems were summarized. The challenges and development trends of photocatalyst applied in microorganism hybrid system for carbon conversion were analyzed.
-
Key words:
- carbon dioxide /
- photocatalyst /
- bioprocess /
- hybrid system.
-
表 1 含金属光催化剂与微生物复合体系及碳转化应用
Table 1. Metal containing photocatalyst and microorganism hybrid system for carbon conversion
含金属基催化剂
Metal containing
photocatalyst微生物
Microorganism光源
Light source产物
Product效率
Efficiency参考文献
ReferencesCdS M. thermoacetica 435–485 nm LED 乙酸 QE = 2.44% ± 0.62% [16] CdS C. autoethanogenum 20 W卤素灯 乙酸盐 0.8 mmol·L−1 [31] CdS R. palustris 荧光灯 类胡萝卜素、PHB PE = 5.98% [34] CdS M. barkeri (395 ± 5)nm LED CH4 QE = 0.34% [33] CdS T. thioparus 100 W LED+AM1.5滤光片 多碳谷氨酸合酶、生物质 — [36] CdS E. coli 蓝光LED(450 nm,
60 mW·cm−2)L-苹果酸、丁酸 — [35] Au nanoclusters M. thermoacetica 低强度模拟阳光
(2 mW·cm−2)乙酸盐 QE = 2.86% ± 0.38% [40] Zr-MOF M. thermoacetica 75 W氙灯+AM 1.5G滤光片 乙酸盐 产率200% [46] ZIF-8 A.platensis 6000 lux LED HCO3– 133.6 mmol·L−1 [47] InP S. cerevisiae 冷白光LED
(5.6 mW·cm−2)莽草酸 QE = 1.58% ± 0.05% [48] 注:QE为量子效率,PE为光合效率.
QE:Quantum efficiency,PE:Photosynthetic efficiency.表 2 复合光催化剂与微生物复合体系及碳转化应用
Table 2. Composite photocatalyst and microorganism hybrid system for carbon conversion
复合光催化剂
Composite photocatalyst微生物
Microorganism光源
Light source产物
Product效率
Efficiency参考文献
ReferencesTiO2-MnPc/CdS M. thermoacetica 75 W 氙灯 乙酸 1—1.25 mmol·L−1 (3.5 d) [70] Ni:CdS M. barkeri — CH4 (21.50 ± 0.98) µmol(6 d) [71] CdS @ZnS、InP@ZnS、CdSe@ZnS 和Cu2ZnSnS4@ZnS A. vinelandii 400 nm 紫外光 NH3、H2、甲酸 NH3、H2产率13.1% [72] CdS@ZnS、CdSe@ZnS 和 InP@ZnS C. necator 365 nm 紫外光 甲基酮、丁二醇、
乙烯、PHB、丙醇乙烯产率 0.6% [72] PFP/PDI异质结 M. theracetica — 乙酸 能量转化效率1.60% [74] Pd/TiO2 Halobacterium — CH4和CO — [7] 硅纳米线阵列 S. ovata (AM 1.5 G,100 mW·cm−2)下
产生约0.3 mA·cm−2的光电流乙酸 法拉第效率90%
在有氧环境下稳定工作200 h[75] TiO2/InP M. barkeri 电流2.5 mA(j = 0.29 mA·cm−2,
η = 360 mV)的电流下进行恒流
电解11.5 h,取样0.5 hCH4 法拉第效率 74%
7 d累积产生110 mL(4.3 mmol)[76] -
[1] 程强. 中国CCUS: 扩大规模 降低成本[N]. 中国石化报, 2021-08-23(005). CHENG Q, China CCUS: Expanding scale and lowering costs[N]. China Petrochemical News, 2021-08-23 (005) (in Chinese).
[2] 国网能源研究院有限公司. 中国能源电力发展展望-2019[M]. 北京: 中国电力出版社, 2019. State grid energy research institute company limited. Development prospect of China's energy and power 2019[M]. Beijing: China Electric Power Press, 2019(in Chinese).
[3] THOI V S, KORNIENKO N, MARGARIT C G, et al. Visible-light photoredox catalysis: Selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex [J]. Journal of the American Chemical Society, 2013, 135(38): 14413-14424. doi: 10.1021/ja4074003 [4] LIU L J, ZHAO H L, ANDINO J M, et al. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry [J]. ACS Catalysis, 2012, 2(8): 1817-1828. doi: 10.1021/cs300273q [5] 晁显玉, 张宁, 简丽娟. Sm3+/TiO2催化剂对光催化还原CO2和H2O合成CH3OH的影响 [J]. 环境化学, 2010, 29(3): 481-485. CHAO X Y, ZHANG N, JIAN L J. Sm3+/TiO2 catalyzed photo-synthesis of methanol from carbon dioxide and water [J]. Environmental Chemistry, 2010, 29(3): 481-485(in Chinese).
[6] BARTON E E, RAMPULLA D M, BOCARSLY A B. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell [J]. Journal of the American Chemical Society, 2008, 130(20): 6342-6344. doi: 10.1021/ja0776327 [7] CHEN Z W, ZHANG H, GUO P J, et al. Semi-artificial photosynthetic CO2 reduction through purple membrane re-engineering with semiconductor [J]. Journal of the American Chemical Society, 2019, 141(30): 11811-11815. doi: 10.1021/jacs.9b05564 [8] XU H P, REBOLLAR D, HE H Y, et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper [J]. Nature Energy, 2020, 5(8): 623-632. doi: 10.1038/s41560-020-0666-x [9] BECERRA J, NGUYEN D T, GOPALAKRISHNAN V N, et al. Plasmonic Au nanoparticles incorporated in the zeolitic imidazolate framework (ZIF-67) for the efficient sunlight-driven photoreduction of CO2 [J]. ACS Applied Energy Materials, 2020, 3(8): 7659-7665. doi: 10.1021/acsaem.0c01083 [10] 齐中, 王熙, 李来胜, 等. 基于水热法制备的TiO2/MoS2复合光催化剂及其光催化制氢活性 [J]. 环境化学, 2016, 35(5): 1027-1034. doi: 10.7524/j.issn.0254-6108.2016.05.2015112403 QI Z, WANG X, LI L S, et al. Development of TiO2/MoS2 by hydrothermal method for photocatalytic hydrogen generation under solar light [J]. Environmental Chemistry, 2016, 35(5): 1027-1034(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2015112403
[11] LIU G Y, GAO F, GAO C, et al. Bioinspiration toward efficient photosynthetic systems: From biohybrids to biomimetics [J]. Chem Catalysis, 2021, 1(7): 1367-1377. doi: 10.1016/j.checat.2021.09.010 [12] 熊威, 冯建勇, 马为民, 等. 基于无机材料-微生物复合的半人工光合作用 [J]. 无机化学学报, 2019, 35(9): 1521-1534. doi: 10.11862/CJIC.2019.186 XIONG W, FENG J Y, MA W M, et al. Semi-artificial photosynthesis based on inorganic material-microbe hybrids [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(9): 1521-1534(in Chinese). doi: 10.11862/CJIC.2019.186
[13] SAKIMOTO K K, KORNIENKO N, YANG P D. Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems [J]. Accounts of Chemical Research, 2017, 50(3): 476-481. doi: 10.1021/acs.accounts.6b00483 [14] LI L X, XU Z J, HUANG X. Whole-cell-based photosynthetic biohybrid systems for energy and environmental applications [J]. ChemPlusChem, 2021, 86(7): 1021-1036. doi: 10.1002/cplu.202100171 [15] 郭禹曼, 洪学明, 樊彬, 等. 光催化-微生物耦合固碳研究进展 [J]. 生物加工过程, 2022, 20(2): 148-159. doi: 10.3969/j.issn.1672-3678.2022.02.004 GUO Y M, HONG X M, FAN B, et al. Recent development of photocatalytic-biological hybrid systems for CO2 assimilation [J]. Chinese Journal of Bioprocess Engineering, 2022, 20(2): 148-159(in Chinese). doi: 10.3969/j.issn.1672-3678.2022.02.004
[16] SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production [J]. Science, 2016, 351(6268): 74-77. doi: 10.1126/science.aad3317 [17] LIU C, COLÓN B C, ZIESACK M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis [J]. Science, 2016, 352(6290): 1210-1213. doi: 10.1126/science.aaf5039 [18] KORNIENKO N, ZHANG J Z, SAKIMOTO K K, et al. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis [J]. Nature Nanotechnology, 2018, 13(10): 890-899. doi: 10.1038/s41565-018-0251-7 [19] SAKIMOTO K K, KORNIENKO N, CESTELLOS-BLANCO S, et al. Physical biology of the materials-microorganism interface [J]. Journal of the American Chemical Society, 2018, 140(6): 1978-1985. doi: 10.1021/jacs.7b11135 [20] LEE Y V, TIAN B Z. Learning from solar energy conversion: Biointerfaces for artificial photosynthesis and biological modulation [J]. Nano Letters, 2019, 19(4): 2189-2197. doi: 10.1021/acs.nanolett.9b00388 [21] XU L, ZHAO Y L, OWUSU K A, et al. Recent advances in nanowire-biosystem interfaces: From chemical conversion, energy production to electrophysiology [J]. Chem, 2018, 4(7): 1538-1559. doi: 10.1016/j.chempr.2018.04.004 [22] SAHOO P C, PANT D, KUMAR M, et al. Material-microbe interfaces for solar-driven CO2 bioelectrosynthesis [J]. Trends in Biotechnology, 2020, 38(11): 1245-1261. doi: 10.1016/j.tibtech.2020.03.008 [23] CESTELLOS-BLANCO S, ZHANG H, KIM J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis [J]. Nature Catalysis, 2020, 3(3): 245-255. doi: 10.1038/s41929-020-0428-y [24] DONG G W, WANG H H, YAN Z Y, et al. Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications [J]. Science of the Total Environment, 2020, 740: 140080. doi: 10.1016/j.scitotenv.2020.140080 [25] HE W W, JIA H M, YANG D F, et al. Composition directed generation of reactive oxygen species in irradiated mixed metal sulfides correlated with their photocatalytic activities [J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16440-16449. [26] SHEN S H, CHEN X B, REN F, et al. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides [J]. Nanoscale Research Letters, 2011, 6(1): 290. doi: 10.1186/1556-276X-6-290 [27] HOPFNER M, WEISS H, MEISSNER D, et al. Semiconductor photocatalysis type B: Synthesis of unsaturated alpha-amino esters from imines and olefins photocatalyzed by silica-supported cadmium sulfide [J]. Photochemical & Photobiological Sciences, 2002, 1(9): 696-703. [28] KOCA A, ŞAHIN M. Photocatalytic hydrogen production by direct Sun light from sulfide/sulfite solution [J]. International Journal of Hydrogen Energy, 2002, 27(4): 363-367. doi: 10.1016/S0360-3199(01)00133-1 [29] HOLMES J D, SMITH P R, EVANS-GOWING R, et al. Bacterial photoprotection through extracellular cadmium sulfide crystallites [J]. Photochemistry and Photobiology, 1995, 62(6): 1022-1026. [30] HOLMES J D, SMITH P R, EVANS-GOWING R, et al. Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes [J]. Archives of Microbiology, 1995, 163(2): 143-147. doi: 10.1007/BF00381789 [31] JIN S, JEON Y, JEON M S, et al. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020552118. doi: 10.1073/pnas.2020552118 [32] 王凯, 贺明丽, 王梦, 等. 以CO2为原料的绿色生物制造 [J]. 化工进展, 2019, 38(1): 538-544. WANG K, HE M L, WANG M, et al. Green biological manufacture with CO2 as raw material [J]. Chemical Industry and Engineering Progress, 2019, 38(1): 538-544(in Chinese).
[33] YE J, YU J, ZHANG Y Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid [J]. Applied Catalysis B:Environmental, 2019, 257: 117916. doi: 10.1016/j.apcatb.2019.117916 [34] WANG B, JIANG Z F, YU J C, et al. Enhanced CO2 reduction and valuable C2 + chemical production by a CdS-photosynthetic hybrid system [J]. Nanoscale, 2019, 11(19): 9296-9301. doi: 10.1039/C9NR02896J [35] HU G P, LI Z H, MA D L, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals [J]. Nature Catalysis, 2021, 4(5): 395-406. doi: 10.1038/s41929-021-00606-0 [36] LIU G Y, GAO F, ZHANG H W, et al. Biosynthetic CdS-Thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation[J]. Nano Research, 2021: 1-8. [37] BEGG S L, EIJKELKAMP B A, LUO Z Y, et al. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae [J]. Nature Communications, 2015, 6: 6418. doi: 10.1038/ncomms7418 [38] LI K G, CHEN J T, BAI S S, et al. Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots [J]. Toxicology in Vitro, 2009, 23(6): 1007-1013. doi: 10.1016/j.tiv.2009.06.020 [39] GODT J, SCHEIDIG F, GROSSE-SIESTRUP C, et al. The toxicity of cadmium and resulting hazards for human health [J]. Journal of Occupational Medicine and Toxicology (London, England), 2006, 1: 22. doi: 10.1186/1745-6673-1-22 [40] ZHANG H, LIU H, TIAN Z Q, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production [J]. Nature Nanotechnology, 2018, 13(10): 900-905. doi: 10.1038/s41565-018-0267-z [41] MENG J S, LIU X, NIU C J, et al. Advances in metal-organic framework coatings: Versatile synthesis and broad applications [J]. Chemical Society Reviews, 2020, 49(10): 3142-3186. doi: 10.1039/C9CS00806C [42] 宋珂琛, 崔希利, 邢华斌. 二氧化碳直接空气捕集材料与技术研究进展 [J]. 化工进展, 2022, 41(3): 1152-1162. SONG K C, CUI X L, XING H B. Progress on direct air capture of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162(in Chinese).
[43] LIANG J Y, LIANG K. Nano-bio-interface engineering of metal-organic frameworks [J]. Nano Today, 2021, 40: 101256. doi: 10.1016/j.nantod.2021.101256 [44] LIANG K, RICHARDSON J J, CUI J W, et al. Metal-organic framework coatings as cytoprotective exoskeletons for living cells [J]. Advanced Materials, 2016, 28(36): 7910-7914. doi: 10.1002/adma.201602335 [45] LIANG K, RICHARDSON J J, DOONAN C J, et al. An enzyme-coated metal-organic framework shell for synthetically adaptive cell survival [J]. Angewandte Chemie, 2017, 129(29): 8630-8635. doi: 10.1002/ange.201704120 [46] JI Z, ZHANG H, LIU H, et al. Cytoprotective metal-organic frameworks for anaerobic bacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42): 10582-10587. doi: 10.1073/pnas.1808829115 [47] CHENG J, ZHU Y X, XU X D, et al. Enhanced biomass productivity of Arthrospira platensis using zeolitic imidazolate framework-8 as carbon dioxide adsorbents [J]. Bioresource Technology, 2019, 294: 122118. doi: 10.1016/j.biortech.2019.122118 [48] GUO J L, SUÁSTEGUI M, SAKIMOTO K K, et al. Light-driven fine chemical production in yeast biohybrids [J]. Science, 2018, 362(6416): 813-816. doi: 10.1126/science.aat9777 [49] 郭雅容, 陈志鸿, 刘琼, 等. 石墨相氮化碳光催化剂研究进展 [J]. 化工进展, 2016, 35(7): 2063-2070. doi: 10.16085/j.issn.1000-6613.2016.07.018 GUO Y R, CHEN Z H, LIU Q, et al. Research progress of graphitic carbon nitride in photocatalysis [J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2063-2070(in Chinese). doi: 10.16085/j.issn.1000-6613.2016.07.018
[50] YAN S C, LV S B, LI Z S, et al. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities [J]. Dalton Transactions (Cambridge, England:2003), 2010, 39(6): 1488-1491. doi: 10.1039/B914110C [51] ZHANG X D, XIE X, WANG H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging [J]. Journal of the American Chemical Society, 2013, 135(1): 18-21. doi: 10.1021/ja308249k [52] WANG Y, WANG X C, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry [J]. Angewandte Chemie International Edition, 2012, 51(1): 68-89. doi: 10.1002/anie.201101182 [53] SANO T, TSUTSUI S, KOIKE K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase [J]. Journal of Materials Chemistry A, 2013, 1(21): 6489-6496. doi: 10.1039/c3ta10472a [54] XU M Y, TREMBLAY P L, JIANG L L, et al. Stimulating bioplastic production with light energy by couplingRalstonia eutrophawith the photocatalyst graphitic carbon nitride [J]. Green Chemistry, 2019, 21(9): 2392-2400. doi: 10.1039/C8GC03695K [55] TREMBLAY P L, XU M Y, CHEN Y M, et al. Nonmetallic abiotic-biological hybrid photocatalyst for visible water splitting and carbon dioxide reduction [J]. iScience, 2020, 23(1): 100784. doi: 10.1016/j.isci.2019.100784 [56] 楚增勇, 原博, 颜廷楠. g-C3N4光催化性能的研究进展 [J]. 无机材料学报, 2014, 29(8): 785-794. doi: 10.15541/jim20130633 CHU Z Y, YUAN B, YAN T N. Recent progress in photocatalysis of g-C3N4 [J]. Journal of Inorganic Materials, 2014, 29(8): 785-794(in Chinese). doi: 10.15541/jim20130633
[57] ZHANG J S, CHEN Y, WANG X C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications [J]. Energy & Environmental Science, 2015, 8(11): 3092-3108. [58] YIN S, HAN J Y, ZHOU T, et al. Recent progress in g-C3N4 based low cost photocatalytic system: Activity enhancement and emerging applications [J]. Catalysis Science \& Technology, 2015, 5: 5048-5061. [59] XU J, ZHANG L W, SHI R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis [J]. Journal of Materials Chemistry A, 2013, 1(46): 14766-14772. doi: 10.1039/c3ta13188b [60] LIN Q Y, LI L, LIANG S J, et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities [J]. Applied Catalysis B:Environmental, 2015, 163: 135-142. doi: 10.1016/j.apcatb.2014.07.053 [61] MA W, WANG N, LI S T, et al. Synthesis and properties of B-Ni-TiO2/g-C3N4 photocatalyst for degradation of chloramphenicol (CAP) under visible light irradiation [J]. Journal of Materials Science:Materials in Electronics, 2018, 29(16): 13957-13969. doi: 10.1007/s10854-018-9529-7 [62] CHEN S C, WANG H, KANG Z X, et al. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals [J]. Nature Communications, 2019, 10: 788. doi: 10.1038/s41467-019-08697-x [63] LI H L, GAO Y, XIONG Z, et al. Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV-vis light irradiation [J]. Applied Surface Science, 2018, 439: 552-559. doi: 10.1016/j.apsusc.2018.01.071 [64] YU J G, WANG K, XIAO W, et al. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts [J]. Physical Chemistry Chemical Physics:PCCP, 2014, 16(23): 11492-11501. doi: 10.1039/c4cp00133h [65] HE Y M, WANG Y, ZHANG L H, et al. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst [J]. Applied Catalysis B:Environmental, 2015, 168/169: 1-8. doi: 10.1016/j.apcatb.2014.12.017 [66] WANG S B, LIN J L, WANG X C. Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction [J]. Physical Chemistry Chemical Physics:PCCP, 2014, 16(28): 14656-14660. doi: 10.1039/c4cp02173h [67] GENG Z H, JIN X C, WANG R M, et al. Low-temperature hydrogen production via water conversion on Pt/TiO2 [J]. The Journal of Physical Chemistry C, 2018, 122(20): 10956-10962. doi: 10.1021/acs.jpcc.8b02945 [68] JIANG Z F, WAN W M, LI H M, et al. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction [J]. Advanced Materials, 2018, 30(10): 1706108. doi: 10.1002/adma.201706108 [69] WEI R B, HUANG Z L, GU G H, et al. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production [J]. Applied Catalysis B:Environmental, 2018, 231: 101-107. doi: 10.1016/j.apcatb.2018.03.014 [70] SAKIMOTO K K, ZHANG S J, YANG P D. Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system [J]. Nano Letters, 2016, 16(9): 5883-5887. doi: 10.1021/acs.nanolett.6b02740 [71] YE J, REN G P, KANG L, et al. Efficient photoelectron capture by Ni decoration in Methanosarcina barkeri-CdS biohybrids for enhanced photocatalytic CO2-to-CH4 conversion [J]. iScience, 2020, 23(7): 101287. doi: 10.1016/j.isci.2020.101287 [72] DING Y C, BERTRAM J R, ECKERT C, et al. Nanorg microbial factories: Light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids [J]. Journal of the American Chemical Society, 2019, 141(26): 10272-10282. doi: 10.1021/jacs.9b02549 [73] LUO B F, WANG Y Z, LI D, et al. A periplasmic photosensitized biohybrid system for solar hydrogen production [J]. Advanced Energy Materials, 2021, 11(19): 2100256. doi: 10.1002/aenm.202100256 [74] GAI P P, YU W, ZHAO H, et al. Solar-powered organic semiconductor-bacteria biohybrids for CO2 reduction into acetic acid [J]. Angewandte Chemie International Edition, 2020, 59(18): 7224-7229. doi: 10.1002/anie.202001047 [75] LIU C, GALLAGHER J J, SAKIMOTO K K, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals [J]. Nano Letters, 2015, 15(5): 3634-3639. doi: 10.1021/acs.nanolett.5b01254 [76] NICHOLS E M, GALLAGHER J J, LIU C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11461-11466. doi: 10.1073/pnas.1508075112 [77] KRASNOVSKY A A, NIKANDROV V V. The photobiocatalytic system: Inorganic semiconductors coupled to bacterial cells [J]. FEBS Letters, 1987, 219(1): 93-96. doi: 10.1016/0014-5793(87)81197-3 [78] HONDA Y, HAGIWARA H, IDA S, et al. Application to photocatalytic H2 production of a whole-cell reaction by recombinant Escherichia coli cells expressing[FeFe]-hydrogenase and maturases genes [J]. Angewandte Chemie International Edition, 2016, 55(28): 8045-8048. doi: 10.1002/anie.201600177 [79] HONDA Y, WATANABE M, HAGIWARA H, et al. Inorganic/whole-cell biohybrid photocatalyst for highly efficient hydrogen production from water [J]. Applied Catalysis B:Environmental, 2017, 210: 400-406. doi: 10.1016/j.apcatb.2017.04.015 [80] MARTINS M, TOSTE C, PEREIRA I A C. Enhanced light-driven hydrogen production by self-photosensitized biohybrid systems [J]. Angewandte Chemie International Edition, 2021, 60(16): 9055-9062. doi: 10.1002/anie.202016960 [81] JIANG Z F, WANG B, YU J C, et al. AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production [J]. Nano Energy, 2018, 46: 234-240. doi: 10.1016/j.nanoen.2018.02.001 [82] HOU T F, LIANG J, WANG L, et al. Cd1-xZnxS biomineralized by engineered bacterium for efficient photocatalytic hydrogen production [J]. Materials Today Energy, 2021, 22: 100869. doi: 10.1016/j.mtener.2021.100869 [83] HAN H X, TIAN L J, LIU D F, et al. Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems [J]. Journal of the American Chemical Society, 2022, 144(14): 6434-6441. doi: 10.1021/jacs.2c00934 [84] WANG B, XIAO K M, JIANG Z F, et al. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures [J]. Energy & Environmental Science, 2019, 12(7): 2185-2191. [85] CHEN M, ZHOU X F, YU Y Q, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans [J]. Environment International, 2019, 127: 353-360. doi: 10.1016/j.envint.2019.03.045 [86] FANG X, KALATHIL S, REISNER E. Semi-biological approaches to solar-to-chemical conversion [J]. Chemical Society Reviews, 2020, 49(14): 4926-4952. doi: 10.1039/C9CS00496C [87] 李锋, 宋浩. 微生物胞外电子传递效率的合成生物学强化 [J]. 生物工程学报, 2017, 33(3): 516-534. doi: 10.13345/j.cjb.160419 LI F, SONG H. Promoting efficiency of microbial extracellular electron transfer by synthetic biology [J]. Chinese Journal of Biotechnology, 2017, 33(3): 516-534(in Chinese). doi: 10.13345/j.cjb.160419
[88] TREMBLAY P L, ANGENENT L T, ZHANG T. Extracellular electron uptake: Among autotrophs and mediated by surfaces [J]. Trends in Biotechnology, 2017, 35(4): 360-371. doi: 10.1016/j.tibtech.2016.10.004 [89] CESTELLOS-BLANCO S, KIM J M, WATANABE N G, et al. Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion [J]. iScience, 2021, 24(9): 102952. doi: 10.1016/j.isci.2021.102952 [90] KORNIENKO N, SAKIMOTO K K, HERLIHY D M, et al. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11750-11755. doi: 10.1073/pnas.1610554113 [91] HUANG S F, TANG J H, LIU X, et al. Fast light-driven biodecolorization by a Geobacter sulfurreducens–CdS biohybrid [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15427-15433. [92] ZHANG R T, HE Y, YI J, et al. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system [J]. Chem, 2020, 6(1): 234-249. doi: 10.1016/j.chempr.2019.11.002