-
微塑料通常是指直径小于5 mm的塑料颗粒[1],其在环境中普遍存在且难以降解,可能对生态系统产生风险,因而引起了广泛的关注. 微塑料体积小,很容易被食物网中各个营养级的生物吸收,并可能在更高的营养级累积[2-3]. 微塑料进入生物体后,一方面可能造成直接毒性效应,如黏膜损坏、肝脏损伤、消化道堵塞等;另一方面可以吸附其他有毒有害物质从而造成间接毒性效应,如内分泌干扰、致癌等[4]. 更有研究发现微塑料可以穿过胃肠屏障、气血屏障甚至是胎盘屏障等[5-7],从而带来更严重的安全风险. 由于目前不完全明确微塑料对人体的毒性效应和致毒机制,一些研究者使用人类细胞系作为受试生物探究微塑料的潜在毒性和有害影响. Prietl等[8]发现白细胞、单核细胞、巨噬细胞被动吸收20 nm的聚苯乙烯(polystyrene, PS),但对500 nm的PS则同时进行被动吸收和主动吸收,且20 nm的PS对3种细胞均有毒性,500 nm的PS仅对巨噬细胞有毒性. Xu等[9]发现,相较于70 nm的PS,25 nm的PS更快更有效地内化到人肺癌细胞A549的细胞质中,从而显著影响细胞活力,改变细胞周期并促进促凋亡蛋白的表达. Wu等[10]发现,100 nm和5 μm的PS均可以对人结直肠腺癌细胞Caco-2产生毒性,但5 μm的PS对细胞内线粒体膜电位产生了更大的影响,并可以通过诱导线粒体去极化降低质膜ATP转运蛋白的活性,从而对细胞产生更大的毒性. Stock等[11]发现,人结直肠腺癌细胞Caco-2大量内化1 μm的PS,但是对10 μm的PS吸收效率则低很多,这也导致1 μm的PS显示出明显的细胞毒性. 总体而言,微塑料对细胞毒性的大小与细胞类型、微塑料粒径和细胞吸收程度有关[12],因此了解微塑料在细胞内的分布状况和累积量对研究微塑料的致毒机制非常重要,而这一切的前提是对细胞内微塑料的准确定性和定量分析.
目前已有综述多针对环境中微塑料的分析方法进行总结,常用方法有光散射技术(light scattering)、光学显微镜(optical microscopy)、电子显微镜(electron microscopy, EM)、傅里叶变换红外光谱(Fourier transform infrared spectroscopy, FT-IR)、拉曼光谱显微镜(Raman microspectroscopy, RM)、X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)、热重-热差分析(thermogravimetric analysis-differential scanning calorimetry, TGA-DSC)、气相色谱-质谱(gas chromatography-mass spectrometry, GC-MS)等[13-14]. 但由于细胞内微塑料研究与环境中微塑料研究的情景不同(例如细胞研究中微塑料粒径更小,且细胞组分与微塑料组分相似),并不是所有环境中微塑料分析方法都直接适用于细胞内微塑料分析. 此外,细胞内微塑料分析方法可以借鉴细胞内纳米颗粒的分析方法,从而形成有别于环境中微塑料分析的特殊方法.
目前,尚未有文章针对细胞内微塑料分析方法进行总结,本文综述了现有细胞研究中常用的微塑料定性和定量方法,并参考其它研究中新兴的检测技术,为细胞内微塑料检测提供新思路.
细胞内微塑料定性和定量方法概述
Qualitative and quantitative methods for intracellular microplastics: A review
-
摘要: 微塑料作为一种广泛存在的新型污染物,可能对生态系统和人类健康产生不利影响,因此需要建立细胞内微塑料的准确定性和定量分析方法,以进一步研究微塑料在生物体内的累积、分布及毒性效应. 由于现有研究大多是以人工合成的塑料颗粒(特别是聚苯乙烯颗粒)作为微塑料的模式颗粒,本文首先总结了4种人工合成微塑料(普通微塑料、荧光标记微塑料、稀有金属标记微塑料、放射性同位素标记微塑料)的特性与制备方法,随后总结并比较了基于人工合成塑料颗粒的细胞内微塑料定性和定量方法(电子显微镜、激光共聚焦显微镜、流式细胞仪),并参考其它研究中新兴的微塑料检测技术(电感耦合等离子体质谱、液体闪烁计数仪、高光谱暗场成像、拉曼成像),为细胞内微塑料检测提供新思路. 最后针对现有细胞内微塑料检测方法存在的问题和局限,提出未来的研究方向.Abstract: Microplastics are widespread contaminants of emerging concern as a result of their potential adverse effects on ecosystems and human health. It is necessary to establish accurate qualitative and quantitative analysis methods for intracellular microplastics, so as to further study the accumulation, distribution and toxicity of microplastics in organisms. Considering the fact that synthetic microplastics (especially polystyrene microspheres) are widely used in current researches, in this review we first focused on recent progress in the characteristics and synthesis methods of four synthetic microplastics (ordinary microplastics, fluorescent-labeled microplastics, rare metal-labeled microplastics, and radioisotope-labeled microplastics). Further, various qualitative and quantitative methods (electron microscopy, confocal scanning laser microscopy, and flow cytometry) for determining intracellular microplastics based on synthetic microplastics were assessed. Emerging techniques (inductively coupled plasma mass spectrometry, liquid scintillation spectrometry, hyperspectral imaging with enhanced darkfield microscopy, Raman spectroscopy) were also evaluated in order to provide new insights into the detection of intracellular microplastics. Finally, we identified knowledge gaps and proposed possible strategies to analyze intracellular microplastics.
-
Key words:
- cell /
- microplastics /
- qualitative method /
- quantitative method.
-
[1] MOORE C J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat [J]. Environmental Research, 2008, 108(2): 131-139. doi: 10.1016/j.envres.2008.07.025 [2] KARLSSON T M, VETHAAK A D, ALMROTH B C, et al. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation [J]. Marine Pollution Bulletin, 2017, 122(1/2): 403-408. [3] IVLEVA N P, WIESHEU A C, NIESSNER R. Microplastic in aquatic ecosystems [J]. Angewandte Chemie International Edition, 2017, 56(7): 1720-1739. doi: 10.1002/anie.201606957 [4] de SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018, 24(4): 1405-1416. doi: 10.1111/gcb.14020 [5] REJMAN J, OBERLE V, ZUHORN I S, et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis[J]. Biochemical Journal, 2004, 377(Pt 1): 159-169. [6] dos SANTOS T, VARELA J, LYNCH I, et al. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines [J]. PLoS One, 2011, 6(9): e24438. doi: 10.1371/journal.pone.0024438 [7] RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: First evidence of microplastics in human placenta [J]. Environment International, 2021, 146: 106274. doi: 10.1016/j.envint.2020.106274 [8] PRIETL B, MEINDL C, ROBLEGG E, et al. Nano-sized and micro-sized polystyrene particles affect phagocyte function [J]. Cell Biology and Toxicology, 2014, 30(1): 1-16. doi: 10.1007/s10565-013-9265-y [9] XU M K, HALIMU G, ZHANG Q R, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell [J]. Science of the Total Environment, 2019, 694: 133794. doi: 10.1016/j.scitotenv.2019.133794 [10] WU B, WU X M, LIU S, et al. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells [J]. Chemosphere, 2019, 221: 333-341. doi: 10.1016/j.chemosphere.2019.01.056 [11] STOCK V, BÖHMERT L, LISICKI E, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo [J]. Archives of Toxicology, 2019, 93(7): 1817-1833. doi: 10.1007/s00204-019-02478-7 [12] YONG C Q Y, VALIYAVEETTIL S, TANG B L. Toxicity of microplastics and nanoplastics in mammalian systems [J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1509. doi: 10.3390/ijerph17051509 [13] BOTTERELL Z L R, BEAUMONT N, DORRINGTON T, et al. Bioavailability and effects of microplastics on marine zooplankton: A review [J]. Environmental Pollution, 2019, 245: 98-110. doi: 10.1016/j.envpol.2018.10.065 [14] SCHWAFERTS C, NIESSNER R, ELSNER M, et al. Methods for the analysis of submicrometer- and nanoplastic particles in the environment [J]. TrAC Trends in Analytical Chemistry, 2019, 112: 52-65. doi: 10.1016/j.trac.2018.12.014 [15] 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展 [J]. 环境化学, 2017, 36(1): 27-36. doi: 10.7524/j.issn.0254-6108.2017.01.2016051704 WANG K, LIN K D, YUAN D X. Research progress on the analysis of microplastics in the environment [J]. Environmental Chemistry, 2017, 36(1): 27-36(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051704
[16] 徐昊垠, 董春明. 悬浮聚合制备微米级聚苯乙烯微球 [J]. 化工生产与技术, 2010, 17(3): 24-26,70. doi: 10.3969/j.issn.1006-6829.2010.03.0008 XU H Y, DONG C M. Synthesis of micron polystyrene microspheres by suspension polymerization [J]. Chemical Production and Technology, 2010, 17(3): 24-26,70(in Chinese). doi: 10.3969/j.issn.1006-6829.2010.03.0008
[17] 张心亚, 孙志娟, 黄洪, 等. 乳液聚合技术最新研究进展 [J]. 合成材料老化与应用, 2006, 35(1): 38-43,58. doi: 10.3969/j.issn.1671-5381.2006.01.011 ZHANG X Y, SUN Z J, HUANG H, et al. Research progress of emulsion polymerization technology [J]. Synthetic Materials Aging and Application, 2006, 35(1): 38-43,58(in Chinese). doi: 10.3969/j.issn.1671-5381.2006.01.011
[18] 张凯, 雷毅, 王宇光, 等. 单分散聚苯乙烯微球的制备及影响因素研究 [J]. 功能高分子学报, 2002, 15(2): 189-193. doi: 10.3969/j.issn.1008-9357.2002.02.015 ZHANG K, LEI Y, WANG Y G, et al. Studies of the preparation of monodisperse polystyrene microspheres and its influence factors [J]. Journal of Functional Polymers, 2002, 15(2): 189-193(in Chinese). doi: 10.3969/j.issn.1008-9357.2002.02.015
[19] 张荣荣, 徐自力. 荧光微球的制备技术及其应用进展 [J]. 高分子通报, 2009(1): 63-70. doi: 10.14028/j.cnki.1003-3726.2009.01.005 ZHANG R R, XU Z L. Development of preparations and applications of fluorescent microsphere [J]. Polymer Bulletin, 2009(1): 63-70(in Chinese). doi: 10.14028/j.cnki.1003-3726.2009.01.005
[20] HONG Y N, LAM J W, TANG B Z. Aggregation-induced emission [J]. Chemical Society Reviews, 2011, 40(11): 5361-5388. doi: 10.1039/c1cs15113d [21] 张双, 秦安军, 孙景志, 等. 聚集诱导发光机理研究 [J]. 化学进展, 2011, 23(4): 623-636. ZHANG S, QIN A J, SUN J Z, et al. Mechanism study of aggregation-induced emission [J]. Progress in Chemistry, 2011, 23(4): 623-636(in Chinese).
[22] YAN N, TANG B Z, WANG W X. Cell cycle control of nanoplastics internalization in phytoplankton [J]. ACS Nano, 2021, 15(7): 12237-12248. doi: 10.1021/acsnano.1c03879 [23] MITRANO D M, BELTZUNG A, FREHLAND S, et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems [J]. Nature Nanotechnology, 2019, 14(4): 362-368. doi: 10.1038/s41565-018-0360-3 [24] ANDO K, KAWAGUCHI H. High-performance fluorescent particles prepared via miniemulsion polymerization [J]. Journal of Colloid and Interface Science, 2005, 285(2): 619-626. doi: 10.1016/j.jcis.2004.12.020 [25] 彭超. 含稀土配合物的荧光编码聚苯乙烯微球的制备与表征[D]. 天津: 天津大学, 2012. PENG C. Rare earth complex-encoded fluorescent polystyrene microspheres: Preparation and characterization[D]. Tianjin: Tianjin University, 2012(in Chinese).
[26] 田莉莉. 基于C-14同位素示踪技术的聚苯乙烯纳米塑料光降解研究[D]. 南京: 南京大学, 2020. TIAN L L. Photodegradation of polystyrene nanoplastics using C-14 isotope tracer[D]. Nanjing: Nanjing University, 2020(in Chinese).
[27] TIAN L L, KOLVENBACH B, CORVINI N, et al. Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment [J]. New Biotechnology, 2017, 38: 101-105. doi: 10.1016/j.nbt.2016.07.008 [28] LABORDA F, BOLEA E, CEPRIÁ G, et al. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples [J]. Analytica Chimica Acta, 2016, 904: 10-32. doi: 10.1016/j.aca.2015.11.008 [29] HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products? [J]. Environmental Science & Technology Letters, 2017, 4(7): 280-285. [30] HÖCHERL A, DASS M, LANDFESTER K, et al. Competitive cellular uptake of nanoparticles made from polystyrene, poly(methyl methacrylate), and polylactide [J]. Macromolecular Bioscience, 2012, 12(4): 454-464. doi: 10.1002/mabi.201100337 [31] NIGAMATZYANOVA L, FAKHRULLIN R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study [J]. Environmental Pollution, 2021, 271: 116337. doi: 10.1016/j.envpol.2020.116337 [32] 杨广烈. 荧光与荧光显微镜 [J]. 光学仪器, 2001, 23(2): 18-29. doi: 10.3969/j.issn.1005-5630.2001.02.005 YANG G L. Fluorescence and fluorescence microscope [J]. Optical Instruments, 2001, 23(2): 18-29(in Chinese). doi: 10.3969/j.issn.1005-5630.2001.02.005
[33] ABIHSSIRA-GARCÍA I S, PARK Y, KIRON V, et al. Fluorescent microplastic uptake by immune cells of Atlantic salmon (Salmo salar L. ) [J]. Frontiers in Environmental Science, 2020, 8: 560206. doi: 10.3389/fenvs.2020.560206 [34] PADDOCK S W. Principles and practices of laser scanning confocal microscopy [J]. Molecular Biotechnology, 2000, 16(2): 127-149. doi: 10.1385/MB:16:2:127 [35] HWANG J, CHOI D, HAN S, et al. Potential toxicity of polystyrene microplastic particles [J]. Scientific Reports, 2020, 10: 7391. doi: 10.1038/s41598-020-64464-9 [36] JEON S, CLAVADETSCHER J, LEE D K, et al. Surface charge-dependent cellular uptake of polystyrene nanoparticles [J]. Nanomaterials (Basel, Switzerland), 2018, 8(12): 1028. doi: 10.3390/nano8121028 [37] 赵书涛, 武晓东, 王策, 等. 流式细胞仪的原理、应用及最新进展 [J]. 现代生物医学进展, 2011, 11(22): 4378-4381. doi: 10.13241/j.cnki.pmb.2011.22.001 ZHAO S T, WU X D, WANG C, et al. Principles, applications and latest developments of flow cytometer [J]. Progress in Modern Biomedicine, 2011, 11(22): 4378-4381(in Chinese). doi: 10.13241/j.cnki.pmb.2011.22.001
[38] VARELA J A, BEXIGA M G, ÅBERG C, et al. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells [J]. Journal of Nanobiotechnology, 2012, 10: 39. doi: 10.1186/1477-3155-10-39 [39] AMMANN A A. Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool [J]. Journal of Mass Spectrometry, 2007, 42(4): 419-427. doi: 10.1002/jms.1206 [40] REDONDO-HASSELERHARM P E, VINK G, MITRANO D M, et al. Metal-doping of nanoplastics enables accurate assessment of uptake and effects on Gammarus pulex [J]. Environmental Science. Nano, 2021, 8(6): 1761-1770. doi: 10.1039/D1EN00068C [41] HE S, CHI H Y, LI C J, et al. Distribution, bioaccumulation, and trophic transfer of palladium-doped nanoplastics in a constructed freshwater ecosystem [J]. Environmental Science:Nano, 2022, 9(4): 1353-1363. doi: 10.1039/D1EN00940K [42] ABDOLAHPUR MONIKH F, CHUPANI L, VIJVER M G, et al. Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size [J]. Environmental Pollution, 2021, 269: 116066. doi: 10.1016/j.envpol.2020.116066 [43] FLORES K, TURLEY R S, VALDES C, et al. Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) [J]. Applied Spectroscopy Reviews, 2021, 56(1): 1-26. doi: 10.1080/05704928.2019.1694937 [44] 张向阳, 郭华良, 刘福亮, 等. 液体闪烁谱仪的检定方法 [J]. 核电子学与探测技术, 2010, 30(6): 779-781,786. doi: 10.3969/j.issn.0258-0934.2010.06.015 ZHANG X Y, GUO H L, LIU F L, et al. A calibration method of liquid scintillation spectrometry [J]. Nuclear Electronics & Detection Technology, 2010, 30(6): 779-781,786(in Chinese). doi: 10.3969/j.issn.0258-0934.2010.06.015
[45] AL-SID-CHEIKH M, ROWLAND S J, KAEGI R, et al. Synthesis of 14C-labelled polystyrene nanoplastics for environmental studies [J]. Communications Materials, 2020, 1: 97. doi: 10.1038/s43246-020-00097-9 [46] ZAMORA-PEREZ P, TSOUTSI D, XU R X, et al. Hyperspectral-enhanced dark field microscopy for single and collective nanoparticle characterization in biological environments [J]. Materials (Basel, Switzerland), 2018, 11(2): 243. doi: 10.3390/ma11020243 [47] GIANNONI L, LANGE F, TACHTSIDIS I. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: Past, current and future developments [J]. Journal of Optics, 2018, 20(4): 044009. doi: 10.1088/2040-8986/aab3a6 [48] FAKHRULLIN R, NIGAMATZYANOVA L, FAKHRULLINA G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research [J]. Science of the Total Environment, 2021, 772: 145478. doi: 10.1016/j.scitotenv.2021.145478 [49] ISHMUKHAMETOV I, NIGAMATZYANOVA L, FAKHRULLINA G, et al. Label-free identification of microplastics in human cells: Dark-field microscopy and deep learning study [J]. Analytical and Bioanalytical Chemistry, 2022, 414(3): 1297-1312. doi: 10.1007/s00216-021-03749-y [50] AHLINDER L, WIKLUND LINDSTRÖM S, LEJON C, et al. Noise removal with maintained spatial resolution in Raman images of cells exposed to submicron polystyrene particles [J]. Nanomaterials (Basel, Switzerland), 2016, 6(5): 83. doi: 10.3390/nano6050083 [51] RIBEIRO-CLARO P, NOLASCO M M, ARAÚJO C. Characterization of microplastics by Raman spectroscopy[M]//Characterization and Analysis of Microplastics. Amsterdam: Elsevier, 2017: 119-151. [52] EVANOFF D D Jr, HECKEL J, CALDWELL T P, et al. Monitoring DPA release from a single germinating Bacillus subtilis endospore via surface-enhanced Raman scattering microscopy [J]. Journal of the American Chemical Society, 2006, 128(39): 12618-12619. doi: 10.1021/ja0642717 [53] CHENG J X, JIA Y K, ZHENG G F, et al. Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology [J]. Biophysical Journal, 2002, 83(1): 502-509. doi: 10.1016/S0006-3495(02)75186-2 [54] FREUDIGER C W, MIN W, SAAR B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy [J]. Science, 2008, 322(5909): 1857-1861. doi: 10.1126/science.1165758 [55] BAE K, ZHENG W, HUANG Z W. Spatial light-modulated stimulated Raman scattering (SLM-SRS) microscopy for rapid multiplexed vibrational imaging [J]. Theranostics, 2020, 10(1): 312-322. doi: 10.7150/thno.38551 [56] ZHANG D L, WANG P, SLIPCHENKO M N, et al. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy [J]. Accounts of Chemical Research, 2014, 47(8): 2282-2290. doi: 10.1021/ar400331q [57] HUANG B, YAN S, XIAO L, et al. Label-free imaging of nanoparticle uptake competition in single cells by hyperspectral stimulated Raman scattering [J]. Small, 2018, 14(10): 1703246. doi: 10.1002/smll.201703246 [58] CHOI D S, LIM S, PARK J S, et al. Label-free live-cell imaging of internalized microplastics and cytoplasmic organelles with multicolor CARS microscopy [J]. Environmental Science & Technology, 2022, 56(5): 3045-3055. [59] LÖDER M G J, KUCZERA M, MINTENIG S, et al. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples [J]. Environmental Chemistry, 2015, 12(5): 563-581. doi: 10.1071/EN14205 [60] MAJEWSKY M, BITTER H, EICHE E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC) [J]. Science of the Total Environment, 2016, 568: 507-511. doi: 10.1016/j.scitotenv.2016.06.017 [61] FRIES E, DEKIFF J H, WILLMEYER J, et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy [J]. Environmental Science. Processes & Impacts, 2013, 15(10): 1949-1956. [62] DUEMICHEN E, BRAUN U, KRAEMER R, et al. Thermal extraction combined with thermal desorption: A powerful tool to investigate the thermo-oxidative degradation of polyamide 66 materials [J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 288-298. doi: 10.1016/j.jaap.2015.08.006
计量
- 文章访问数: 4986
- HTML全文浏览数: 4986
- PDF下载数: 185
- 施引文献: 0