-
随着制药工业的快速发展,抗生素在土壤和地表水中被广泛检出,引起了诸多关注. 诺氟沙星(NOR)作为第三代氟喹诺酮类药物被广泛应用于医疗领域[1]. 由于其难降解的特性,在水生生态系统中持续累积,会导致细菌耐药性的形成和扩散,威胁到人类健康和生态平衡[2-3]. 因此,亟待开发一种简单、高效且低成本的降解转化NOR的方法.
高级氧化工艺(AOPs)目前被广泛应用于处理难降解污染物,其中过硫酸盐活化过程中由于其产生的硫酸根自由基(SO4•−)具有氧化还原电位更高(E0=2.5—3.1 V),自由基寿命更长的特点(t1/2=30—40 μs)而受到广泛关注. 然而,低PMS的自分解速率限制了生成的SO4•−的产量. 因此,为了提高污染物去除性能,应开发一种有效的PMS激活方法. 金属有机框架(MOFs)具有高比表面积、大孔容、高化学稳定性等特点[4-5]. 其中ZIFs及其衍生物对过一硫酸盐具有很高的催化活性,可以有效降解许多难降解有机污染物,如王渊源等[6]利用ZIF-67活化PMS降解罗丹明B;Wang等[7]利用热处理后的ZIF-8催化降解气态甲醛,取得了良好的效果. 然而单一金属基ZIFs的活性位点相对较少,催化性能一般;高度分散的ZIFs纳米颗粒难以从悬浮体系中分离出来,导致催化剂回收率低、不可重复使用和二次污染,这限制了它们在环境中的实际应用.
针对上述问题,采用静电纺丝结合原位生长法制备了双金属沸石型咪唑骨架CoZn-ZIF/PAN纳米复合纤维. 电纺纳米纤维具有大孔隙率、高比表面积和良好的稳定性,是负载ZIFs晶体的理想骨架[8-9]. 并且以纤维膜形式存在的ZIFs材料可以有效避免催化离子聚集的现象,易于从反应体系中分离、回收和再利用[10-11]. CoZn-ZIF纳米颗粒被成功地固定在电纺PAN纳米纤维上,形成致密的葡萄串纳米纤维,这种设计有效地增加了材料的比表面积,使纳米颗粒上的活性位点充分暴露,显著提高了纳米复合纤维膜的催化效率,提升了材料的稳定性.
原位生长的双金属CoZn-ZIF/PAN纳米复合纤维膜催化降解诺氟沙星
In situ growth of bimetallic CoZn-ZIF/PAN nanocomposite fiber membranes catalyzes the degradation of norfloxacin
-
摘要: 针对高级氧化技术中催化材料活性位点单一,pH值使用范围窄,难以回收利用的难题,采用静电纺丝结合原位生长法制备了双金属CoZn-ZIF/PAN纳米复合纤维膜,用于催化过一硫酸盐降解诺氟沙星(NOR). 光谱结合能谱分析结果显示CoZn-ZIF纳米颗粒被成功地固定在电纺PAN纳米纤维上. 与空白纳米纤维相比,双金属CoZn-ZIF颗粒使得CoZn-ZIF/PAN膜具有更大的比表面积,为催化反应提供了大量的活性位点. 随着Co掺杂比例的增大,NOR的降解率增加;在pH 3—9范围内,CoZn-ZIF/PAN复合纳米纤维膜催化PMS对诺氟沙星的降解率达到90%以上,且最佳的pH工作条件为中性范围,更有利于该纳米复合纤维膜的实际应用. 循环试验显示3个循环周期后,CoZn-ZIF/PAN对NOR的降解效率仍高于80%,而Co离子的浸出浓度远低于2 mg·L−1,说明了该纳米复合纤维膜材料具有优异的循环性和稳定性. 利用原位生长的方式实现CoZn-ZIF/PAN纳米复合纤维膜的构建是实现类Fenton反应高效运行的可行策略.Abstract: Advanced oxidation technology are hindered by the poor catalytic activity of single-site catalysts, acidic circumstance necessary, and difficult recycling of catalytic materials. In this work, bimetallic CoZn-ZIF/PAN nanocomposite fiber membranes were prepared by electrospinning combined with in situ growth strategy to catalyze the norfloxacin (NOR) degradation by permonosulfate. The spectral binding energy spectroscopy results showed that CoZn-ZIF nanoparticles were successfully immobilized on electrospun PAN nanofibers. Compared with blank nanofibers, the CoZn-ZIF/PAN membrane have larger specific surface area, which provide a large number of active sites for catalytic reactions. With the increase of the Co-doping ratio, the degradation rate of NOR increased. In the pH 3—9 range, the degradation rate of NOR catalyzed by CoZn-ZIF/PAN membrane reaches more than 90%, and the optimal pH working conditions are neutral range, which is more conducive to the practical application of the nanocomposite fiber membrane. The cycling test showed that the degradation efficiency of CoZn-ZIF/PAN for NOR was still higher than 80% after three cycles, while the leaching concentration of Co ions was much lower than 2 mg·L−1, indicating that the nanocomposite fiber membrane material had excellent cycling and stability. The construction of CoZn-ZIF/PAN nanocomposite fiber membrane with in-situ growth strategy is a feasible tactics to achieve efficient operation of Fenton-like reactions.
-
Key words:
- electrospinning /
- metal-organic framework /
- catalysis /
- advanced oxidation.
-
表 1 ZnO/PAN和CoZn-ZIF/PAN的比表面积及孔径分析
Table 1. Specific surface area and pore size analysis of ZnO/PAN and CoZn-ZIF/PAN
样品
SampleBET表面积/(m 2 ·g−1)
SBET微孔体积/(cm3·g−1)
Microporous volume平均孔径/nm
Average pore diameters总和
Total微孔
Microporous介孔
MesoporeZnO/PAN 22.3175 19.5721 2.7454 0.002560 24.5778 CoZn-ZIF/PAN 414.6892 391.6709 23.0184 0.258235 3.0662 -
[1] ZHUANG Y, LUAN J F. Improved photocatalytic property of peony-like InOOH for degrading norfloxacin [J]. Chemical Engineering Journal, 2020, 382: 122770. doi: 10.1016/j.cej.2019.122770 [2] YIN N, CHEN H Y, YUAN X Z, et al. Highly efficient photocatalytic degradation of norfloxacin via Bi2Sn2O7/PDIH Z-scheme heterojunction: Influence and mechanism [J]. Journal of Hazardous Materials, 2022, 436: 129317. doi: 10.1016/j.jhazmat.2022.129317 [3] WANG G, ZHAO D Y, KOU F Y, et al. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): Kinetics, mechanism and degradation pathway [J]. Chemical Engineering Journal, 2018, 351: 747-755. doi: 10.1016/j.cej.2018.06.033 [4] WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis [J]. Chemical Reviews, 2020, 120(2): 1438-1511. doi: 10.1021/acs.chemrev.9b00223 [5] WANG C H, ZHENG T, LUO R, et al. in situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(Ⅵ) removal [J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24164-24171. [6] 王渊源, 阎鑫, 艾涛, 等. 碳化三聚氰胺泡沫负载ZIF-67活化过硫酸氢钾降解罗丹明B [J]. 材料导报, 2022, 36(17): 193-199. WANG Y Y, YAN X, AI T, et al. Carbonized melamine foam loaded with ZIF-67 activated peroxymonosulfate for degradation of rhodamine B [J]. Materials Reports, 2022, 36(17): 193-199(in Chinese).
[7] WANG T Q, WANG Y F, SUN M Z, et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde [J]. Chemical Science, 2020, 11: 6670-6681. doi: 10.1039/D0SC01397H [8] SUJA P S, RESHMI C R, SAGITHA P, et al. Electrospun nanofibrous membranes for water purification [J]. Polymer Reviews, 2017, 57(3): 467-504. doi: 10.1080/15583724.2017.1309664 [9] YANG L Y, CAO J H, CAI B R, et al. Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries [J]. Electrochimica Acta, 2021, 382: 138346. doi: 10.1016/j.electacta.2021.138346 [10] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications [J]. Chemical Reviews, 2019, 119(8): 5298-5415. doi: 10.1021/acs.chemrev.8b00593 [11] 李婷婷, 张志明, 韩正波. 基于静电纺丝技术的聚合物基MOFs纳米纤维膜的研究进展 [J]. 无机材料学报, 2021, 36(6): 592-600. doi: 10.15541/jim20200266 LI T T, ZHANG Z M, HAN Z B. Research progress in polymer-based metal-organic framework nanofibrous membranes based on electrospinning [J]. Journal of Inorganic Materials, 2021, 36(6): 592-600(in Chinese). doi: 10.15541/jim20200266
[12] SHEN K, ZHANG L, CHEN X D, et al. Ordered macro-microporous metal-organic framework single crystals [J]. Science, 2018, 359(6372): 206-210. doi: 10.1126/science.aao3403 [13] SUN X X, LI M C, REN S X, et al. Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: Basic membrane property and battery performance [J]. Journal of Power Sources, 2020, 454: 227878. doi: 10.1016/j.jpowsour.2020.227878 [14] YAO Y Y, WANG C H, YAN X, et al. Rational regulation of Co-N-C coordination for high-efficiency generation of 1O2 toward nearly 100% selective degradation of organic pollutants [J]. Environmental Science & Technology, 2022, 56(12): 8833-8843. [15] LONG L L, SU L L, HU W, et al. Micro-mechanism of multi-pathway activation peroxymonosulfate by copper-doped cobalt silicate: The dual role of copper [J]. Applied Catalysis B:Environmental, 2022, 309: 121276. doi: 10.1016/j.apcatb.2022.121276 [16] LU N, LIN H B, LI G L, et al. ZIF-67 derived nanofibrous catalytic membranes for ultrafast removal of antibiotics under flow-through filtration via non-radical dominated pathway [J]. Journal of Membrane Science, 2021, 639: 119782. doi: 10.1016/j.memsci.2021.119782