-
六氯丁二烯(hexachlorobutadiene, HCBD)是一种卤代脂肪族化合物,于2017年被增列入斯德哥尔摩公约管控名单,是一类新持久性有机污染物(POPs). HCBD没有天然来源 [1 − 2],曾被广泛生产并应用于工业生产橡胶、传热液体、变压器、液压液体、杀虫剂、除草剂和杀菌剂 [1,3]. 欧洲于二十世纪七十年代末终止HCBD的有意生产和大部分使用. 1982年,全球HCBD的有意生产量估计为1 万t,而作为副产品无意产生的HCBD量要高得多,仅美国一国在含氯化学品生产过程中无意产生的HCBD就高达1.4 万t [4]. 氯碱化工等有机化工生产对工业无意生产HCBD总产量贡献为99%以上 [3 − 4]. 美国环保局(EPA)目前正在最终确定《有毒物质控制法》下的关于对持久性、生物累积性和有毒化学品的监管规则,提出在2021年3月8日之后,禁止所有在商业中制造、加工和分销HCBD和含HCBD的产品或物品,但以下情况除外:(1)氯化溶剂生产过程中作为副产物的HCBD的无意生产;(2)作为废燃料燃烧的HCBD的商业加工和分销 [5]. 鉴于氯化溶剂生产过程中极易产生HCBD副产物,氯化溶剂生产过程样品和氯化溶剂产品中的HCBD赋存现状尚不明确,对其赋存现状的认识对HCBD有效管控至关重要.
目前对于二噁英等斯德哥尔摩公约管控名单中典型POPs的分析检测方法已经比较成熟,有一些国际统一的标准分析方法,如用于二噁英分析的美国EPA的方法23、8280、1613、欧盟的EN1948等. 而对于HCBD等新POPs相关研究较少,并未形成统一的分析方法. 目前对HCBD的分析检测研究主要集中于水、土壤、污泥等环境介质,其研究方法也有所差异[6 − 8]. 现有研究的仪器检测方法主要有气相色谱-电子捕获检测(GC-ECD)、气相色谱-质谱检测(GC-MS)、气相色谱-串联质谱联用检测(GC-MS/MS)等. Chen等利用GC-MS/MS法首次报道了太原大气PM2.5中存在HCBD,平均浓度为3.69 pg·m−3,方法的回收率为87.4%—143% [9]. Fang等利用GC-ECD技术检测了污染场地土壤中的HCBD,浓度为0.02—0.37 ng·g−1[10]. 有研究应用GC-MS法分析了污泥和土壤样品中的HCBD [11],方法的加标回收率范围为51.3—119%,相对标准偏差小于15%,仪器检出限为0.015 ng·g−1,说明应用GC-MS分析方法检测环境介质中的HCBD是可行的. 有研究总结了环境中多种介质(如空气、水体、土壤、污泥、生物组织)中HCBD的分析方法 [12],提出GC-MS能很好的去除HCBD分析过程中干扰物质的影响,能够达到HCBD准确定性定量的标准,因此目前研究大多应用GC-MS法分析环境介质中的HCBD.
HCBD的主要排放源大多与化工生产有关,目前大部分研究都围绕化工生产厂周围的土壤、大气等环境样品中的HCBD展开研究,对化工生产过程中本身的化工产品或过程样品中HCBD的研究很少. 本研究将建立化工样品中HCBD的GC-MS分析检测方法,重点对化工生产过程,尤其是氯乙烯类化工样品中HCBD进行分析,以期为化工生产过程中HCBD的排放水平研究提供技术支撑,为化工行业HCBD的管理控制提供参考.
化工样品中六氯丁二烯的气相色谱-质谱分析方法
Analytical method for hexachlorobutadiene in chemical manufacturing samples by gas chromatography-mass spectrometrometry
-
摘要: 六氯丁二烯(hexachlorobutadiene,HCBD)已于2017年被增列入斯德哥尔摩公约管控名单,是一类新持久性有机污染物(POPs). 氯碱等化工生产过程能够无意产生HCBD副产物,是目前HCBD的主要来源,然而目前对于化工生产过程样品和化工产品中HCBD的研究较少,尚无完善的HCBD分析方法. 本研究建立了氯乙烯、氯苯等典型化工产品生产过程样品中HCBD的气相色谱-质谱(GC-MS)分析方法,优化了进样口温度、升温程序、载气流速等色谱参数,标准曲线线性范围为0—500 ng·mL−1,方法加标回收率为77.8%—102%,相对标准偏差为3.6%—6.0%,标准曲线相关系数R2为0.9998,方法检出限为0.049 ng·mL−1,定量限为0.16 ng·mL−1,能够满足化工样品中HCBD的准确定性和定量要求. 将建立的GC-MS分析方法应用于我国典型氯乙烯、氯苯等化工生产过程样品中HCBD的检测分析,发现三、四氯乙烯生产过程中HCBD浓度远高于氯苯,浓度范围为0.003—243000 μg·mL−1. 本方法的建立能够为化工生产过程中HCBD的排放研究提供技术支撑,为化工行业HCBD的源识别和管控提供重要信息.Abstract: Hexachlorobutadiene (HCBD) has been listed in Stockholm Convention in 2017, as a kind of emerging persistent organic pollutants (POPs). Chemical manufacturing processes such as chlor-alkali production can unintentionally produce HCBD as byproducts, which is considered as the main source of HCBD at present. Current HCBD related studies mainly focused on environmental samples such as soil and atmosphere surrounding chemical production plants. However, few studies has been conducted on HCBD occurrences in chemical products or chemical residues during the chemical manufacturing processes. This study established a gas chromatography-mass spectrometry (GC-MS) method for the analysis of HCBD in chemical manufacturing samples such as chloroethylene and chlorobenzene. The chromatographic parameters containing inlet temperature, heating procedure and carrier gas flow rate were optimized. The linear range of the standard curve is 0—500 ng·mL−1. The recoveries of the method were 77.8%—102%, and the relative standard deviations were 3.6%—6.0%. The correlation coefficient R2 of the standard curve was 0.9998. The detection limit was 0.049 ng·mL−1, and the limit of quantification was 0.16 ng·mL−1, which could meet the accurate qualitative and quantitative requirements of HCBD in chemical samples. The established GC-MS analysis method was then applied to the analysis of HCBD in practical chemical samples from typical chloroethylene and chlorobenzene manufacturing processes in China. It was found that the concentration of HCBD in the production of trichloroethylene and tetrachloroethylene (0.003—243000 μg·mL−1) was much higher than that of chlorobenzene. The method can provide technical support for the study of HCBD emission in the chemical production process, and provide important information for their source identification and emission control.
-
-
[1] LECLOUS A. Hexachlorobutadiene – Sources, environmental fate and risk characterisation [M]. Brussels, Belgium: Euro Chlor, 2004: 7. [2] 韩余, 田琳, 唐阵武. 六氯丁二烯的来源、环境分布及其生态风险研究进展[J]. 环境污染与防治, 2019, 41(2): 216-223. doi: 10.15985/j.cnki.1001-3865.2019.02.018 HAN Y, TIAN L, TANG Z W. Research progress in distributions, sources and ecological risks of hexachlorobutadiene[J]. Environmental Pollution & Control, 2019, 41(2): 216-223(in Chinese). doi: 10.15985/j.cnki.1001-3865.2019.02.018
[3] BELOVA E V, DZHIVANOVA Z V, TKHORZHNITSKY G P, et al. The effect of irradiation with accelerated electrons on the extraction of Pu with 30% solution of TBP in Isopar-M[J]. Progress in Nuclear Energy, 2017, 94: 202-207. doi: 10.1016/j.pnucene.2016.04.015 [4] WANG L, BIE P, ZHANG J B. Estimates of unintentional production and emission of hexachlorobutadiene from 1992 to 2016 in China[J]. Environmental Pollution, 2018, 238: 204-212. doi: 10.1016/j.envpol.2018.03.028 [5] U. S. Environmental Protection Agency. Hexachlorobutadiene (HCBD);regulation of persistent, bioaccumulative, and toxic chemicals under TSCA section 6(h)[J]. The Federal Register / FIND, 2021, 86(003): 922-932. [6] LIU L H, ZHOU H D. Investigation and assessment of volatile organic compounds in water sources in China[J]. Environmental Monitoring and Assessment, 2011, 173(1): 825-836. [7] 张利飞, 杨文龙, 薛令楠, 等. 四氯乙烯生产企业周边空气中六氯丁二烯的污染特征[C]. 持久性有机污染物论坛暨第十一届持久性有机污染物国际学术研讨会, 2016. [8] ZHANG H Y, JIANG L, ZHOU X, et al. Determination of hexachlorobutadiene, pentachlorobenzene, and hexachlorobenzene in waste incineration fly ash using ultrasonic extraction followed by column cleanup and GC-MS analysis[J]. Analytical and Bioanalytical Chemistry, 2018, 410(7): 1893-1902. doi: 10.1007/s00216-018-0849-5 [9] CHEN Y J, ZHANG Y H, CHEN Y Y, et al. GC-MS/MS analysis for source identification of emerging POPs in PM2.5[J]. Ecotoxicology and Environmental Safety, 2020, 193: 110368. doi: 10.1016/j.ecoenv.2020.110368 [10] FANG Y Y, NIE Z Q, DIE Q Q, et al. Organochlorine pesticides in soil and air at and around a compound contaminated site: Vertical distribution, soil-air exchange and risk evaluation[J]. Stochastic Environmental Research and Risk Assessment, 2018, 32(4): 1179-1188. doi: 10.1007/s00477-017-1412-1 [11] 张海燕. 新型卤代有机污染物六氯丁二烯、多氯萘的环境赋存和全氟化合物膳食暴露的初步研究[D]. 北京: 中国科学院大学, 2014. ZHANG H Y. Preliminary study on environmental occurrence of new halogenated organic pollutants HCBD and PCN and dietary exposure of perfluorocompounds[D]. Beijing: University of Chinese Academy of Sciences, 2014(in Chinese).
[12] 王尧天, 张海燕, 史建波, 等. 六氯丁二烯分析方法研究进展[J]. 色谱, 2021, 39(1): 46-56. doi: 10.3724/SP.J.1123.2020.05019 WANG Y T, ZHANG H Y, SHI J B, et al. Research progress on analytical methods for the determination of hexachlorobutadiene[J]. Chinese Journal of Chromatography, 2021, 39(1): 46-56(in Chinese). doi: 10.3724/SP.J.1123.2020.05019
[13] ZHANG H Y, SHEN Y T, LIU W C, et al. A review of sources, environmental occurrences and human exposure risks of hexachlorobutadiene and its association with some other chlorinated organics[J]. Environmental Pollution, 2019, 253: 831-840. doi: 10.1016/j.envpol.2019.07.090 [14] UNEP. Report of the persistent organic pollutants review committee on the work of its ninth meeting: Risk management evaluation on hexachlorobutadiene. Draft 2013. UNEP/POPS/POPRC. 9/13/Add. 2[R]. United Nations Environment Programme, Rome, 2013.