-
煤矸石是煤炭开采和洗选过程中产生的一种干基灰分大于50%的岩石. 按来源可分为煤巷矸石、水洗矸石、岩巷矸石、自燃矸石、手选矸石和剥离矸石[1],故来源十分丰富,其产量约占原煤总产量的10%—25%,是煤炭工业排放量最大的固体废物,也是占地面积最大的工业固体废物之一,占全国工业固体废物的20%以上[2]. 煤矸石的排放和堆放造成了严重的资源浪费和环境污染. 露天存放的煤矸石中含有大量的有毒重金属元素,在受日晒、雨淋、风吹等自然条件的影响后,可能通过雨水渗入地表水或土壤,然后通过土壤渗入浅层地下水,这使得镉、汞等各种有毒有害元素渗入到地下,严重影响生态平衡[3 − 4]. 煤矸石相比于普通煤炭,其具有含碳量低、热值低、质地坚硬的特点,是矿山固体废弃物的一种. 其次,从化学组成来看,煤矸石主要含有无机质和有机质[5],其中无机质主要为SiO2和Al2O3,其次是Fe2O3、CaO、MgO等氧化物和单质元素. 因此,集多种有用元素于一体的特殊性质,决定了煤矸石的综合利用成为了众多学者的研究热点和重点[6].
目前,煤矸石已广泛用于有用组分回收、废水处理、建筑材料、农业生产、制备氧化铝[7 − 8]和高压电缆、发电等[9 − 12],制备煤矸石基土壤改良剂也是一种新的利用方式. 其中,煤矸石改良剂作为其资源化利用的重要方式,受到了研究者的广泛关注,然而目前煤矸石改良剂还存在一些问题,比如含硫量高、养分缺乏、重金属污染[13 − 15]等,在利用之前首先应当确定煤矸石的理化性质,通过活化改性等预处理措施,提高煤矸石与修复土壤的适配性,降低其有毒有害成分,实现煤矸石的资源化利用. 本文综述了煤矸石资源化的研究进展,对比了不同的改性方法,进一步阐述了污泥改性煤矸石在生态修复与土壤改良方面的进展,为后期煤矸石和污泥的高值化利用奠定基础.
废弃煤矸石资源化利用研究进展
Research progress on resource utilization of waste coal gangue
-
摘要: 随着社会的高速发展,工业废物堆积造成的环境问题日渐严重. 煤矸石是一种煤炭开采和洗选过程中产生的典型工业废弃物. 其大量堆积不仅占用土地资源,而且还会污染环境,引起地下水污染,造成山体滑坡、塌陷等地质灾害,严重威胁人类生存环境. 近年来,“以废治废”模式成为了工业废弃物处置的研究热点之一,也是生态修复的重要研究方向. 本文综述了煤矸石资源化利用的研究进展,进一步阐述了污泥改性煤矸石在生态修复与土壤改良方面的进展,为后期煤矸石和污泥的高值化利用奠定基础.Abstract: With the rapid development of society, the environmental problems caused by the accumulation of industrial waste are becoming more serious. Coal gangue is a typical industrial waste produced in coal mining and washing. The massive accumulation of coal gangue not only occupies land resources but also leads to the environmental pollution such as groundwater, and even geological disasters such as landslides and cave-ins, which seriously threaten human survival. In recent years, the “treating waste by waste” model has become one of the research hotspots of industrial waste disposal and also an important direction in ecological remediation research. This review sums up the progress of coal gangue resourceful utilization research, further elaborates the progress of coal gangue modified with sludge in soil improvement and ecological remediation, which lays the foundation of the long-term high-value utilization of coal gangue and sludge.
-
Key words:
- coal gangue /
- industrial waste /
- sludge /
- resource recovery /
- ecological restoration and improvement.
-
表 1 煤矸石组成成分表(%)
Table 1. Coal gangue composition table (%)
来源
SourceSiO2 Al2O3 Fe2O3 CaO MgO TiO2 R2O 参考文献
References掘进矸石 53.10 18.40 8.10 4.50 1.50 0.85 0.70 [17] 洗选矸石 50.50 37.90 4.15 1.80 1.07 1.60 0.65 普通煤矸石 41.10 22.90 2.40 0.73 0.34 0.86 2.00 [18] 六安市煤炭开采 37.80 21.20 2.50 2.60 0.30 0.90 1.40 [19] 内蒙古准格尔 36.90 38.98 0.33 — 0.03 1.01 0.17 [20] 于贵州盘县某矿区 37.30 17.35 18.19 6.85 1.15 4.19 — [21] 普通煤矸石 38.18 18.48 12.97 2.86 2.63 4.51 0.02 [22] 高铝煤矸石 42.17 48.41 0.07 3.77 0.94 1.35 — [23] 普通煤矸石 41.47 15.95 3.53 1.23 1.79 — 1.71 [24] 注:R2O为其他氧化物,“—”未检测到相应物质.
R2O is other oxide, and "—"indicates that the corresponding substance has not been detected.表 2 煤矸石的综合利用情况
Table 2. Comprehensive utilization of coal gangue
利用途径
Utilization ways具体方式
Specific way优点
Advantage缺点
Disadvantage分选 有用矿物 重复利用资源 有用矿石占比较少、经济成本较大 矸石 直接利用 采矿区充填 技术含量较低、操作简单、经济 充填不紧密、容易坍塌 铺路建设 耐腐蚀能力强、抗压抗剪强度大 雨水天气易打滑,存在安全隐患 生活中的应用 发电 节约能源,变废为宝 热值低,炉耗高 化工原料 硅、铝元素含量高 造成环境二次污染 建筑材料 生产水泥、砖等 节省土地和能源,变废为宝 产品受样品差异大,质量问题较多 表 3 污泥、煤矸石修复土壤利用情况
Table 3. Utilization of soil remediation by sludge and coal gangue
研究对象
Research objects研究方法
Research method结论
Conclusion参考文献
References污泥、煤矸石 混合复配,采用高羊茅盆栽试验进行验证 煤矸石粒径越小,基质黏粒含量越高;污泥堆肥能显著提高基质黏粒百分比,有利于保水保肥;植物堆肥则能提高砂粒占比,有利于透水透气 [81] 污泥、煤矸石 利用ZnCl2、盐酸对污泥、煤矸石复合基改性并对废水厌氧消化 污泥和煤矸石制备的复合基活性炭表面孔状结构发达,官能团种类增加,可改变厌氧微生物群落结构,优势菌种得到富集 [82] 优良城市污泥、煤矸石 混合复配,淋滤盆栽实验 可以有效钝化煤矸石中重金属元素,淋溶出煤矸石中的重金属含量低,且能有效提升渗滤液的pH,可以作为优良基质 [83] 城市污泥、煤矸石以及土壤 城市污泥、煤矸石土壤混合基质盆栽试验 植物-土壤系统可以逐渐降低生长介质中有害物质的浓度 [84] 污泥、煤矸石、粉煤灰以及土壤 污泥、煤矸石、粉煤灰混合后加入到土壤中进行盆栽试验 有利于植物的生长,而且复合基质中重金属污染水平处于清洁状态 [85] 污泥、煤矸石以及土壤 不同处理的污泥和煤矸石混合后加入到土壤中进行盆栽试验 能促进部分植物地下部分的生长 [86] 污泥、煤矸石、粉煤灰以及土壤 污泥、煤矸石和粉煤灰混合后加入到土壤中进行盆栽试验 土壤的有机质、全氮、有效磷及速效钾含量均达到了土壤等级的一级标准,土壤的营养成分均得到了改善 [87] 污泥、煤矸石、粉煤灰以及土壤 污泥、煤矸石和粉煤灰混合后加入到土壤中进行梯田试验 可以实现固体废弃物的资源化利用,变废为宝,同时又增加煤矸石山复垦中土壤的肥力 [88] -
[1] 贾鲁涛, 吴倩云. 煤矸石特性及其资源化综合利用现状[J]. 煤炭技术, 2019, 38(11): 37-40. JIA L T, WU Q Y. Properties and comprehensive utilization status of coal gangue resource[J]. Coal Technology, 2019, 38(11): 37-40 (in Chinese).
[2] 蔡峰, 刘泽功, 林柏泉, 等. 淮南矿区煤矸石中微量元素的研究[J]. 煤炭学报, 2008, 33(8): 892-897. CAI F, LIU Z G, LIN B Q, et al. Study on trace elements in gangue in Huainan mining area[J]. Journal of China Coal Society, 2008, 33(8): 892-897 (in Chinese).
[3] 顾霖骏, 申艳军, 王念秦, 等. 煤矸石堆积区土壤重金属潜在危害评价及污染特征[J]. 西安科技大学学报, 2022, 42(5): 942-949. GU L J, SHEN Y J, WANG N Q, et al. Pollution characteristics and potential risk accessment of heavy metals in soil of coal gangue accumulation areas[J]. Journal of Xi’an University of Science and Technology, 2022, 42(5): 942-949 (in Chinese).
[4] CHILIKWAZI B, ONYARI J M, WANJOHI J M. Determination of heavy metals concentrations in coal and coal gangue obtained from a mine, in Zambia[J]. International Journal of Environmental Science and Technology, 2023, 20(2): 2053-2062. doi: 10.1007/s13762-022-04107-w [5] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165-178. LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165-178 (in Chinese).
[6] ASHFAQ M, ALI BAIG MOGHAL A, BASHA B M. The sustainable utilization of coal gangue in geotechnical and geoenvironmental applications[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2022, 26(3): 03122003. doi: 10.1061/(ASCE)HZ.2153-5515.0000705 [7] 中国科学院山西煤炭化学研究所. 一种煤矸石制备纳米氧化铝的方法: CN202210828294.1[P]. 2022-09-16. Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences. A method for preparing nanometer alumina from coal gangue: CN202210828294.1[P]. September 16, 2022(in Chinese).
[8] YANG Q C, ZHANG F, DENG X J, et al. Extraction of alumina from alumina rich coal gangue by a hydro-chemical process[J]. Royal Society Open Science, 2020, 7(4): 192132. doi: 10.1098/rsos.192132 [9] 韩邦华. 煤矸石在水泥行业中的综合利用[J]. 江西建材, 2019(11): 6-8. HAN B H. Comprehensive utilization of coal gangue in cement industry[J]. Jiangxi Building Materials, 2019(11): 6-8 (in Chinese).
[10] 王永刚. 固废在建材方面的资源化利用综述[J]. 广东化工, 2020, 47(21): 115-118. WANG Y G. A summary of resource utilization of solid waste in building materials[J]. Guangdong Chemical Industry, 2020, 47(21): 115-118 (in Chinese).
[11] 田莉, 于晓萌, 秦津. 煤矸石资源化利用途径研究进展[J]. 河北环境工程学院学报, 2020, 30(5): 31-36. TIAN L, YU X M, QIN J. Research progress in utilization of coal gangue resources[J]. Journal of Hebei University of Environmental Engineering, 2020, 30(5): 31-36 (in Chinese).
[12] 谢娟, 夏润南, 杜红霞, 等. α-Fe2O3/煤矸石复合光催化剂的制备及其降解五氯酚性能的研究[J]. 无机盐工业, 2019, 51(5): 74-77. XIE J, XIA R N, DU H X, et al. Preparation of α-Fe2O3/coal gangue composite photocatalyst and its application in pentachlorophenol degradation[J]. Inorganic Chemicals Industry, 2019, 51(5): 74-77 (in Chinese).
[13] GAO H D, HUANG Y L, LI W, et al. Explanation of heavy metal pollution in coal mines of China from the perspective of coal gangue geochemical characteristics[J]. Environmental Science and Pollution Research, 2021, 28(46): 65363-65373. doi: 10.1007/s11356-021-14766-w [14] OUYANG S Y, HUANG Y L, GAO H D, et al. Study on the distribution characteristics and ecological risk of heavy metal elements in coal gangue taken from 25 mining areas of China[J]. Environmental Science and Pollution Research, 2022, 29(32): 48285-48300. doi: 10.1007/s11356-022-19238-3 [15] JIANG X, LU W X, ZHAO H Q, et al. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump[J]. Natural Hazards and Earth System Sciences, 2014, 14(6): 1599-1610. doi: 10.5194/nhess-14-1599-2014 [16] 霍晨磊, 何亚波, 孟子浩. 煤矸石资源化利用技术综述[J]. 山西焦煤科技, 2011, 35(1): 47-49, 52. doi: 10.3969/j.issn.1672-0652.2011.01.013 HUO C L, HE Y B, MENG Z H. Summary of gangue resource utilization technology[J]. Shanxi Coking Coal Science & Technology, 2011, 35(1): 47-49, 52 (in Chinese). doi: 10.3969/j.issn.1672-0652.2011.01.013
[17] 周锦华, 胡振琪. 固体废弃物煤矸石室内击实试验研究[J]. 金属矿山, 2003(12): 53-55. ZHOU J H, HU Z Q. Study on indoor impaction test of coal refuse[J]. Metal Mine, 2003(12): 53-55 (in Chinese).
[18] GUO Y X, YAN K Z, CUI L, et al. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016, 302: 33-41. doi: 10.1016/j.powtec.2016.08.034 [19] GUO Y X, YAN K Z, CUI L, et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51-57. doi: 10.1016/j.minpro.2014.07.001 [20] 贾敏, 杨磊. 煤矸石煅烧活化提取氧化铝技术研究[J]. 矿产综合利用, 2020(2): 140-144. doi: 10.3969/j.issn.1000-6532.2020.02.025 JIA M, YANG L. Study on technology of alumina extraction from coal gangue activated by calcination[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 140-144 (in Chinese). doi: 10.3969/j.issn.1000-6532.2020.02.025
[21] 刘成龙, 谢宇充, 夏举佩, 等. 煤矸石中和渣酸化提取铝、钛实验研究[J]. 硅酸盐通报, 2015, 34(4): 966-972. LIU C L, XIE Y C, XIA J P, et al. Study on extracting aluminum and titanium from neutral residues of coal gangue by acid leaching[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(4): 966-972 (in Chinese).
[22] 辜芳, 李银, 李浩林, 等. 煤矸石酸溶液中稀土混合萃取优化实验研究[J]. 化学工程, 2020, 48(5): 31-36. GU F, LI Y, LI H L, et al. Study on optimized experiment of mixed extraction of rare earths from acid solution of coal gangue[J]. Chemical Engineering (China), 2020, 48(5): 31-36 (in Chinese).
[23] 范剑明. 高铝煤矸石铝硅分级提取实验研究[J]. 无机盐工业, 2019, 51(11): 65-68. doi: 10.11962/1006-4990.2019-0017 FAN J M. Study on sequential extraction experiment of aluminum and silicon from high-alumina coal gangue[J]. Inorganic Chemicals Industry, 2019, 51(11): 65-68 (in Chinese). doi: 10.11962/1006-4990.2019-0017
[24] 罗立群, 王召, 魏金明, 等. 铁尾矿-煤矸石-污泥复合烧结砖的制备与特性[J]. 中国矿业, 2018, 27(3): 127-131, 137. LUO L Q, WANG Z, WEI J M, et al. Preparation and characteristics of composite sintered brick by iron ore tailing, coal gangue and sewage sludge[J]. China Mining Magazine, 2018, 27(3): 127-131, 137 (in Chinese).
[25] 焦亚东, 徐树全, 彭道军, 等. 煤矸石的活化方法与活化机理研究进展[J]. 应用化工, 2022, 51(8): 2362-2366, 2372. JIAO Y D, XU S Q, PENG D J, et al. Research progress on activation and mechanism of coal gangue[J]. Applied Chemical Industry, 2022, 51(8): 2362-2366, 2372 (in Chinese).
[26] ZHANG Y L, LING T C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials–A review[J]. Construction and Building Materials, 2020, 234: 117424. doi: 10.1016/j.conbuildmat.2019.117424 [27] HAN R C, GUO X N, GUAN J F, et al. Activation mechanism of coal gangue and its impact on the properties of geopolymers: A review[J]. Polymers, 2022, 14(18): 3861. doi: 10.3390/polym14183861 [28] 何燕. 热活化煤矸石—水泥复合体系水化性能分析[J]. 粉煤灰综合利用, 2012, 25(2): 14-17. HE Y. Research on hydration properties of blended cement based on thermal activated coal gangue[J]. Fly Ash Comprehensive Utilization, 2012, 25(2): 14-17 (in Chinese).
[29] MOGHADAM M J, AJALLOEIAN R, HAJIANNIA A. Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review[J]. Construction and Building Materials, 2019, 221: 84-98. doi: 10.1016/j.conbuildmat.2019.06.071 [30] 吴红, 廖德华, 孔德顺, 等. 不同激发剂对煤矸石基免烧砖性能的影响[J]. 硅酸盐通报, 2012, 31(1): 221-225. WU H, LIAO D H, KONG D S, et al. Effect of different activators on properties of gangue based unfired brick[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(1): 221-225 (in Chinese).
[31] 司鹏. 煤矸石酸法提铝的活化技术研究[D]. 上海: 华东理工大学, 2011. SI P. Activation technology for aluminum recovery from coal spoil through acid leaching route[D]. Shanghai: East China University of Science and Technology, 2011 (in Chinese).
[32] 郭丽君, 李超, 赵亮, 等. 煤矸石的机械-热复合活化研究[J]. 应用化工, 2018, 47(8): 1800-1802. GUO L J, LI C, ZHAO L, et al. Research on the mechanical and thermal activation of coal gangue[J]. Applied Chemical Industry, 2018, 47(8): 1800-1802 (in Chinese).
[33] YANG X Y, ZHANG Y, LIN C. Microstructure analysis and effects of single and mixed activators on setting time and strength of coal gangue-based geopolymers[J]. Gels, 2022, 8(3): 195. doi: 10.3390/gels8030195 [34] LI C, WAN J H, SUN H H, et al. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 515-520. [35] 张晓旭, 仇玉良, 刘开平, 等. 化学激发煤矸石对水镁石纤维水泥砂浆性能影响[J]. 混凝土, 2010(11): 119-121. ZHANG X X, QIU Y L, LIU K P, et al. Research on chemical activation of coal gangue and impact on the performance of fiber brucite reinforced cement mortar[J]. Concrete, 2010(11): 119-121 (in Chinese).
[36] 王世林, 牛文静, 张攀, 等. 煤矸石的研究现状与应用[J]. 江西化工, 2019(5): 69-71. WANG S L, NIU W J, ZHANG P, et al. Research status and application of coal gangue[J]. Jiangxi Chemical Industry, 2019(5): 69-71 (in Chinese).
[37] 王丹萍, 李巧玲. 煤矸石改性的研究进展[J]. 现代化工, 2014, 34(8): 50-52. WANG D P, LI Q L. Research progress in coal gangue modification[J]. Modern Chemical Industry, 2014, 34(8): 50-52 (in Chinese).
[38] 刘春风. CFB矸石渣资源化综合利用研究[D]. 武汉: 武汉理工大学, 2016. LIU C F. Research on recycling comprehensive utilization of CFB gangue slag[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese).
[39] 杨莎莎, 张贵泉. 煤矸石特性与资源化利用研究综述[C]//第四届中国国际砂石骨料大会论文集. 2017: 200-203. YANG S S, ZHANG G Q. A review on the characteristics and utilization of coal gangue as a resource [C]//Collection of papers of the 4th China International Congress on aggregate. 2017: 200-203(in Chinese).
[40] 陈义群, 董元华. 土壤改良剂的研究与应用进展[J]. 生态环境, 2008, 17(3): 1282-1289. CHEN Y Q, DONG Y H. Progress of research and utilization of soil amendments[J]. Ecology and Environment, 2008, 17(3): 1282-1289 (in Chinese).
[41] ANANYEVA K, WANG W, SMUCKER A J M, et al. Can intra-aggregate pore structures affect the aggregate’s effectiveness in protecting carbon?[J]. Soil Biology and Biochemistry, 2013, 57: 868-875. doi: 10.1016/j.soilbio.2012.10.019 [42] BLAGODATSKAYA E, KUZYAKOV Y. Active microorganisms in soil: Critical review of estimation criteria and approaches[J]. Soil Biology and Biochemistry, 2013, 67: 192-211. doi: 10.1016/j.soilbio.2013.08.024 [43] 王琼, 张强, 王斌, 等. 高硫煤矸石不同细度与用量对苏打盐化土化学性状的影响[J]. 山西农业科学, 2016, 44(9): 1320-1324, 1363. doi: 10.3969/j.issn.1002-2481.2016.09.22 WANG Q, ZHANG Q, WANG B, et al. Effect of applying rates and fineness of high-sulfur coal gangue on chemical properties of soda-saline soil[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(9): 1320-1324, 1363 (in Chinese). doi: 10.3969/j.issn.1002-2481.2016.09.22
[44] 王琼, 张强, 王斌, 等. 高硫煤矸石对苏打盐化土的改良效果研究[J]. 中国农学通报, 2017, 33(36): 119-123. WANG Q, ZHANG Q, WANG B, et al. Improving effect of high-sulfur coal gangue on soda-saline soil[J]. Chinese Agricultural Science Bulletin, 2017, 33(36): 119-123 (in Chinese).
[45] LI F, LI X J, HOU L, et al. A long-term study on the soil reconstruction process of reclaimed land by coal gangue filling[J]. CATENA, 2020, 195: 104874. doi: 10.1016/j.catena.2020.104874 [46] 王兴明, 王运敏, 储昭霞, 等. 煤矸石对铜尾矿中重金属(Zn, Pb, Cd, Cr和Cu)形态及生物有效性的影响[J]. 煤炭学报, 2017, 42(10): 2688-2697. WANG X M, WANG Y M, CHU Z X, et al. Effects of coal gangue addition on the chemical fraction and bioavailability of heavy metals (Zn, Pb, Cd, Cr and Cu) in copper mine tailings[J]. Journal of China Coal Society, 2017, 42(10): 2688-2697 (in Chinese).
[47] XIE M Z, LIU F Q, ZHAO H L, et al. Mineral phase transformation in coal gangue by high temperature calcination and high-efficiency separation of alumina and silica minerals[J]. Journal of Materials Research and Technology, 2021, 14: 2281-2288. doi: 10.1016/j.jmrt.2021.07.129 [48] 张泽琳, 葛小冬. 煤矸石中硫铁矿工业化分选研究进展[J]. 煤炭技术, 2016, 35(10): 293-295. ZHANG Z L, GE X D. Advances in industrialization separation of iron pyrite from coal gangue[J]. Coal Technology, 2016, 35(10): 293-295 (in Chinese).
[49] ASHFAQ M, HEERA LAL M, ALI BAIG MOGHAL A. Static and dynamic leaching studies on coal gangue[M]//Lecture Notes in Civil Engineering. Cham: Springer International Publishing, 2020: 261-270. [50] LIU F Q, XIE M Z, YU G Q, et al. Study on calcination catalysis and the desilication mechanism for coal gangue[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(30): 10318-10325. [51] 赵昱, 刘喆, 刘佳欣, 等. 煤矸石制备环境功能材料的研究进展[J]. 化学通报, 2022, 85(9): 1090-1095. ZHAO Y, LIU Z, LIU J X, et al. Research progress in environmental functional materials prepared from coal gangue[J]. Chemistry, 2022, 85(9): 1090-1095 (in Chinese).
[52] 胡浩栋. 煤矸石用于制备过硫酸盐催化剂的研究[D]. 太原: 太原理工大学, 2020. HU H D. Study on the application of coal gangue for persulfate catalyst preparation[D]. Taiyuan: Taiyuan University of Technology, 2020 (in Chinese).
[53] QIN L, GAO X J, SU A S, et al. Effect of carbonation curing on sulfate resistance of cement-coal gangue paste[J]. Journal of Cleaner Production, 2021, 278: 123897. doi: 10.1016/j.jclepro.2020.123897 [54] QURESHI A A, KAZI T G, BAIG J A, et al. Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass[J]. Chemosphere, 2020, 255: 126960. doi: 10.1016/j.chemosphere.2020.126960 [55] WU J X, YAN X L, LI L, et al. High-efficiency adsorption of Cr(VI) and RhB by hierarchical porous carbon prepared from coal gangue[J]. Chemosphere, 2021, 275: 130008. doi: 10.1016/j.chemosphere.2021.130008 [56] 王现丽, 牛云峰, 吴俊峰. 改性煤矸石作为废水处理吸附剂的试验研究[J]. 金属矿山, 2010(7): 161-162, 172. WANG X L, NIU Y F, WU J F. Experimental research on modified coal gangue as adsorbent for wastewater treatment[J]. Metal Mine, 2010(7): 161-162, 172 (in Chinese).
[57] 裴会芳, 张长森, 陈景华. 城市污泥/煤矸石制备多孔陶粒的试验研究[J]. 中国陶瓷, 2015, 51(3): 72-77. PEI H F, ZHANG C S, CHEN J H. Preparation of porous ceramsite with sludge and gangue[J]. China Ceramics, 2015, 51(3): 72-77 (in Chinese).
[58] JABŁOŃSKA B, KITYK A V, BUSCH M, et al. The structural and surface properties of natural and modified coal gangue[J]. Journal of Environmental Management, 2017, 190: 80-90. [59] 石凯, 李巧玲. 多孔煤矸石吸附剂的制备及其吸附热力学研究[J]. 中北大学学报(自然科学版), 2020, 41(1): 79-84, 90. SHI K, LI Q L. Preparation and adsorption thermodynamics of porous coal gangue adsorbent[J]. Journal of North University of China (Natural Science Edition), 2020, 41(1): 79-84, 90 (in Chinese).
[60] ZHANG G L, ZHANG M Y, LIU Y Q, et al. Preparation of zinc-modified coal gangue and its adsorption on phosphate from wastewater[J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 141-149. [61] 邓颖兰, 魏恺颉, 赵迪斐, 等. 我国煤矸石固体废弃物在建筑与环境修复领域的资源化利用[J]. 能源研究与利用, 2021(5): 33-36. DENG Y L, WEI K J, ZHAO D F, et al. Resource utilization of coal gangue solid waste in the field of building and environmental restoration in China[J]. Energy Research & Utilization, 2021(5): 33-36 (in Chinese).
[62] WU D, HOU Y B, DENG T F, et al. Thermal, hydraulic and mechanical performances of cemented coal gangue-fly ash backfill[J]. International Journal of Mineral Processing, 2017, 162: 12-18. doi: 10.1016/j.minpro.2017.03.001 [63] ASHFAQ M, HEERA LAL M, ALI BAIG MOGHAL A. Utilization of Coal Gangue for Earthworks: Sustainability Perspective[C]//Advances in Sustainable Construction and Resource Management. Singapore: Springer, 2021: 203-218. [64] ZHANG Q, WANG Z J, ZHANG J X, et al. Integrated green mining technology of “coal mining-gangue washing-backfilling-strata control-system monitoring”—Taking Tangshan Mine as a case study[J]. Environmental Science and Pollution Research, 2022, 29(4): 5798-5811. doi: 10.1007/s11356-021-16083-8 [65] 刘章锋. 煤矸石污泥固化机理研究[J]. 建材与装饰, 2016(49): 175. LIU Z F. Study on solidification mechanism of coal gangue sludge[J]. Construction Materials & Decoration, 2016(49): 175 (in Chinese).
[66] HU L I . Coal gangue and its application research in building materials[J]. Materials Science Forum, 2016, 873: 96-104. doi: 10.4028/www.scientific.net/MSF.873.96 [67] 支楠, 刘蓉, 宋方方. 煤矸石污泥陶粒烧胀性能研究[J]. 砖瓦, 2016(7): 14-17. ZHI N, LIU R, SONG F F. Study on the firing expansion of ceramsite with coal gangue added sludge[J]. Block-Brick-Tile, 2016(7): 14-17 (in Chinese).
[68] 祁非, 张长森, 陈景华. 利用城市污泥/煤矸石制备多孔陶粒的研究[J]. 陶瓷学报, 2015, 36(1): 58-63. QI F, ZHANG C S, CHEN J H. Preparation of porous ceramsite with sludge and gangue[J]. Journal of Ceramics, 2015, 36(1): 58-63 (in Chinese).
[69] ZHOU L, ZHOU H J, HU Y X, et al. Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue[J]. Journal of Environmental Management, 2019, 234: 245-252. [70] 张会, 王星雨, 赵钰明, 等. 高掺量煤矸石制备堇青石多孔陶瓷的性能研究[J]. 当代化工, 2022, 51(10): 2344-2347. ZHANG H, WANG X Y, ZHAO Y M, et al. Study on the properties of porous cordierite ceramics synthesized from coal gangue with high content[J]. Contemporary Chemical Industry, 2022, 51(10): 2344-2347 (in Chinese).
[71] 程冠吉, 赵维现, 邹欣伟, 等. 添加淀粉对煤矸石基多孔莫来石陶瓷的性能影响[J]. 太原科技大学学报, 2022, 43(5): 422-426. CHENG G J, ZHAO W X, ZOU X W, et al. Effect of adding starch on properties of coal gangue based porous mullite ceramics[J]. Journal of Taiyuan University of Science and Technology, 2022, 43(5): 422-426 (in Chinese).
[72] 周金星, 秦琪焜, 乔浩亮, 等. 一种基于煤矸石和污泥的生态改良基质制备方法: CN111011159A[P].[2020-04-17]. ZHOU J X, QIN Q K, QIAO H L, et al. Method for preparing ecologically improved substrate based on coal gangue and sludge: CN111011159A[P]. [2020-04-17](in Chinese).
[73] OLADEJO J, SHI K Q, LUO X, et al. A review of sludge-to-energy recovery methods[J]. Energies, 2018, 12(1): 60. doi: 10.3390/en12010060 [74] RAHEEM A, SIKARWAR V S, HE J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review[J]. Chemical Engineering Journal, 2018, 337: 616-641. doi: 10.1016/j.cej.2017.12.149 [75] 董晓芸, 柯凯恩, 胡自航, 等. 施用不同污泥堆肥对土壤理化性质及微生物活性的影响[J]. 东北林业大学学报, 2021, 49(6): 70-75. DONG X Y, KE K E, HU Z H, et al. Effect of different sludge composting on soil physical and chemical properties and microbial activity[J]. Journal of Northeast Forestry University, 2021, 49(6): 70-75 (in Chinese).
[76] LIN X K, LI S C, WEI Z B, et al. Indirect application of sludge for recycling in agriculture to minimize heavy metal contamination of soil[J]. Resources, Conservation and Recycling, 2021, 166: 105358. doi: 10.1016/j.resconrec.2020.105358 [77] 包红旭, 张欣, 苏弘治, 等. 一种适用于无土草坪的煤矸石混合培养基质及应用: CN108496749A[P]. [2018-09-07]. BAO H X, ZHANG X, SU H Z, et al. Coal gangue mixed culture medium suitable for soilless lawn and application of culture medium: CN108496749A[P]. [2018-09-07](in Chinese).
[78] LIU M J, XIA S P, WANG J, et al. Effect of agricultural application of municipal sewage sludge on plant-soil system: A review[J]. Journal of Applied Ecology, 2017, 28(12): 4134-4142. [79] YIN N N, ZHANG Z, WANG L P, et al. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation[J]. Environmental Science and Pollution Research, 2016, 23(17): 17840-17849. doi: 10.1007/s11356-016-6941-5 [80] TANG Q, LI L Y, ZHANG S, et al. Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area[J]. Journal of Geochemical Exploration, 2018, 186: 1-11. doi: 10.1016/j.gexplo.2017.11.018 [81] 柯凯恩, 董晓芸, 周金星, 等. 煤矸石生态基质的制备配方及其肥力特征研究[J]. 中国土壤与肥料, 2021(4): 308-317. KE K E, DONG X Y, ZHOU J X, et al. Evaluation of the formula for coal gangue ecological substrate and its fertility indexes[J]. Soil and Fertilizer Sciences in China, 2021(4): 308-317 (in Chinese).
[82] 张明媚. 污泥-煤矸石复合基活性炭的制备及其在污水厌氧消化中的应用[D]. 太原: 太原理工大学, 2020. ZHANG M M. Preparation of sludge-coal gangue composite activated carbon and application in anaerobic digestion of sewage[D]. Taiyuan: Taiyuan University of Technology, 2020 (in Chinese).
[83] 翟全德. 城市污泥作为矿山废弃地生态修复基质的筛选与效果研究[D]. 贵阳: 贵州大学, 2020. ZHAI Q D. Study on the selection and effect of sewage sludge used as ecological restoration matrix in mine wasteland[D]. Guiyang: Guizhou University, 2020 (in Chinese).
[84] ZHEN C G, LENG P S, LIU L J, et al. Influences of municipal sludge applied in slope vegetation restoration on surface water environment[J]. Journal of Applied Ecology, 2018, 29(4):1321-1327. [85] 周昊, 郭姣姣, 王宇翔, 等. 基于层次分析法的山西典型矿区土壤改良效果评价[J]. 中国煤炭, 2018, 44(4): 138-143. ZHOU H, GUO J J, WANG Y X, et al. Assessment of soil improvement effects in typical mining areas in Shanxi basing upon analytic hierarchy process[J]. China Coal, 2018, 44(4): 138-143 (in Chinese).
[86] 田卉宇, 刘荷芳, 郁东宁, 等. 污泥不同处理的复混基质在矸石山复垦中的应用研究[J]. 能源环境保护, 2015, 29(3): 21-25. TIAN H Y, LIU H F, YU D N, et al. Application study of compound-mixed substrates through different sludge treatments on coal gangue reclamation[J]. Energy Environmental Protection, 2015, 29(3): 21-25 (in Chinese).
[87] 王迁, 李庆飞, 张沛沛, 等. 山西某煤矿脱水污泥及矿区固废制备土壤调节剂的试验研究[J]. 煤炭加工与综合利用, 2017(3): 71-76. WANG Q, LI Q F, ZHANG P P, et al. Experimental study on preparation of soil conditioner from dehydrated sludge of a coal mine in Shanxi Province and solid waste from mining area[J]. Coal Processing & Comprehensive Utilization, 2017(3): 71-76 (in Chinese).
[88] 方娜. 污泥、粉煤灰在大同煤矸石山复垦中的研究与应用[J]. 同煤科技, 2020(2): 11-13. FANG N. Research and application of sludge and fly ash in the reclamation of Datong Coal Gangue Dump[J]. Datong Coal Science & Technology, 2020(2): 11-13 (in Chinese).
[89] TREMBLAY R L. Controlling acid mine drainage using an organic cover: The case of the East Sullivan Mine, Abitibi Quebec[J]. American Society of Mining and Reclamation, 1994 (2): 122-127. [90] 卢欢, 董颖博, 林海. 降雨pH对煤矸石中重金属和SO42-释放行为的影响[J]. 有色金属(冶炼部分), 2023(1): 102-109. LU H, DONG Y B, LIN H. Effect of rainfall pH on the release behavior of heavy metals and SO42-in coal gangue[J]. Non-ferrous Metals(Smelting Part), 2023(1): 102-109(in Chinese).
[91] 马保国, 胡振琪. 污泥和粉煤灰覆盖煤矸石山防治污染的模拟试验研究[J]. 农业环境科学学报, 2014, 33(8): 1553-1559. MA B G, HU Z Q. Simulation experiment on control of coal gangue pollution using sewage-sludge and fly ash covering[J]. Journal of Agro-Environment Science, 2014, 33(8): 1553-1559 (in Chinese).
[92] 周新华, 舒悦, 周亮亮, 等. pH值对碱性煤矸石碱度和重金属释放规律影响研究[J]. 安全与环境学报, 2022, 22(5): 2752-2758. ZHOU X H, SHU Y, ZHOU L L, et al. Study on effects of pH value on alkalinity and heavy metal release of alkaline coal gangue[J]. Journal of Safety and Environment, 2022, 22(5): 2752-2758 (in Chinese).
[93] QIAN K M, ZHANG L, WANG L P. An environmentally sound usage of both coal mining residue and sludge[J]. Advanced Materials Research, 2011, 183/184/185: 595-599. [94] 刘荷芳, 荆志林, 张克, 等. 不同污泥的复混基质性质及对牧草生长的影响[J]. 北京农学院学报, 2015, 30(3): 96-102. LIU H F, JING Z L, ZHANG K, et al. Properties of compound-mixed substrates consisted of different sludges and effects on the growth of legume forages[J]. Journal of Beijing University of Agriculture, 2015, 30(3): 96-102 (in Chinese).
[95] 周昊, 郭娇娇, 何绪文, 等. 煤矿区固废改良土壤对植物生长的影响[J]. 煤炭技术, 2018, 37(3): 23-25. ZHOU H, GUO J J, HE X W, et al. Research on impact of coal solid waste improved soil on plant growth[J]. Coal Technology, 2018, 37(3): 23-25 (in Chinese).
[96] 段超, 徐峰, 王金山, 等. 一种改良盐碱地的生物质废弃物土壤调理剂: CN108752127A[P]. [2018-11-06]. DUAN C, XU F, WANG J S, et al. Biomass waste soil conditioner for improving saline and alkaline land: CN108752127A[P]. [2018-11-06](in Chinese).
[97] 秦可敏. 大同矿区煤中有害微量元素的赋存特征及其环境效应[D]. 徐州: 中国矿业大学, 2019. QIN K M. Occurrence characteristics of hazardous trace elements in coal and their environmental effects in Datong mining area[D]. Xuzhou: China University of Mining and Technology, 2019 (in Chinese).
[98] 孔涛, 郑爽, 张莹, 等. 煤矸石对盐碱土壤绿化和土壤微生物的影响[J]. 水土保持学报, 2018, 32(6): 321-326. KONG T, ZHENG S, ZHANG Y, et al. Effects of coal gangue on revegetation and microbial properties of an alkali-saline soil[J]. Journal of Soil and Water Conservation, 2018, 32(6): 321-326 (in Chinese).
[99] 狄军贞, 鲍斯航, 杨逾, 等. 粒径对煤矸石污染物溶解释放规律影响研究[J]. 煤炭科学技术, 2020, 48(4): 178-184. DI J Z, BAO S H, YANG Y, et al. Study on effects of particle size on dissolution and release law of pollutants in gangue[J]. Coal Science and Technology, 2020, 48(4): 178-184 (in Chinese).
[100] 易名儒, 曾玉, 刘永, 等. 不同粒径好氧颗粒污泥的结构稳定性及污染物去除效果[J]. 环境科技, 2021, 34(5): 23-28. YI M R, ZENG Y, LIU Y, et al. Structural stability and contaminant removal efficiency of aerobic granular sludge with different particle size[J]. Environmental Science and Technology, 2021, 34(5): 23-28 (in Chinese).
[101] 秦琪焜, 方健梅, 王根柱, 等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术, 2022, 50(7): 304-314. QIN Q K, FANG J M, WANG G Z, et al. Experimental study of planting substrate mixed with coal gangue and municipal sludge[J]. Coal Science and Technology, 2022, 50(7): 304-314 (in Chinese).
[102] HAN X N, DONG Y, GENG Y Q, et al. Influence of coal gangue mulching with various thicknesses and particle sizes on soil water characteristics[J]. Scientific Reports, 2021, 11(1): 1-10. doi: 10.1038/s41598-020-79139-8 [103] 周正虎, 王传宽, 张全智. 土地利用变化对东北温带幼龄林土壤碳氮磷含量及其化学计量特征的影响[J]. 生态学报, 2015, 35(20): 6694-6702. ZHOU Z H, WANG C K, ZHANG Q Z. The effect of land use change on soil carbon, nitrogen, and phosphorus contents and their stoichiometry in temperate sapling stands in northeastern China[J]. Acta Ecologica Sinica, 2015, 35(20): 6694-6702 (in Chinese).