-
5-氟尿嘧啶(5-fluoruracil,简写5-FU)是一种广谱抗肿瘤药物,广泛用于结直肠癌、胃癌、胰腺癌、乳腺癌等疾病的治疗中[1]. 5-氟尿嘧啶治疗剂量与中毒剂量接近,临床疗效和不良反应在不同患者中常存在巨大的个体差异[2]. 5-氟尿嘧啶导致的腹泻、口腔黏膜炎、骨髓抑制、手足综合征和心脏毒性等副作用常限制其在某些患者中的使用,其总体有效率也不尽如人意[3 − 4]. 目前,其血药浓度监测方法,主要有高效液相色谱法(HPLC法)和串联质谱法(LC-MS/MS法). LC-MS/MS被誉为小分子检测领域的“金标准”,具有特异性强、灵敏度高、准确性高、分析时间短、高通量等优点,已成为血药浓度的监测首选方法. 但目前报道LC-MS/MS法测定5-氟尿嘧啶中,样品前处理提取方法大多采用液液萃取法[5 − 9]、衍生化法[10]、蛋白沉淀法[11]. 液液萃取法是目前5-氟尿嘧啶样品前处理应用最多的方法,需加入大量的有毒有害有机溶剂,且需要浓缩富集再检测,步骤繁琐,费时费力,污染环境,效率低下. 衍生化法虽可提高检测灵敏度及增加5-氟尿嘧啶在色谱柱上保留,但是过程相比液液萃取法更加繁琐,可操作性差. 蛋白沉淀法是一种最简单的生物样本前处理方法,一般仅需使用蛋白沉淀剂沉淀样品后可直接测定. 但由于5-氟尿嘧啶本身化合物极性较大,需使用大量有机溶剂蛋白沉淀,且配套使用HILIC 亲水模式色谱柱分离测定. 因此建立一种准确、简单、快速的样品前处理方法用于5-氟尿嘧啶血药浓度监测至关重要. 基于此,本研究建立了使用硫酸锌直接蛋白沉淀结合反相色谱串联质谱法测定人血浆中5-氟尿嘧啶的方法,并应用于胃癌患者的治疗药物监测.
直接蛋白沉淀结合串联质谱法用于血浆中5-氟尿嘧啶治疗药物监测应用
Application of direct protein precipitation combined with tandem mass spectrometry in monitoring 5-fluorouracil therapeutic drugs in plasma
-
摘要: 本文建立一种直接蛋白沉淀结合串联质谱法测定血浆中5-氟尿嘧啶浓度的方法. 以0.1 mol·L−1硫酸锌作为蛋白沉淀剂处理血浆样品,离心后取上清液直接测定. 以5-氟尿嘧啶-13C,15N2为内标标准品,采用Shimadzu Shim-pack GIST-HP C18-AQ (100 mm×2.1 mm I.D.,1.9 μm)色谱柱;水(A相)-甲醇(B相)为流动相,梯度洗脱:0—1 min,5%B;1—2 min,5%B→95%B;2—2.5 min,95%B;2.5—2.6 min,95%B→5%B;2.6—5 min,5%B,流速:0.3 mL∙min−1;柱温:35 ℃;进样体积:5 μL;采用电喷雾离子源,负离子多反应监测模式(MRM)进行质谱定量分析. 检测离子对:5-氟尿嘧啶 m/z 129.1→42.1,5-氟尿嘧啶-13C,15N2内标标准品 m/z 132.1→44.1. 该方法校准曲线相关系数大于0.999. 质控品测定准确度结果与理论值接近,批内及批间准确度在94.8%—99.0%之间,RSD在0.9%—4.8%之间. 5-氟尿嘧啶提取回收率在95.6%—99.8%之间. 基质因子在0.92—0.96之间,内标归一化的基质因子在0.99—1.00之间. 稳定性各实验条件下每一测定浓度的均值与标示浓度的相对偏差RE均在-5.2%—1.7%之间. 该方法前处理简便、分析速度快、灵敏度高、专属性强、稳定性好,可用于5-氟尿嘧啶治疗药物监测.Abstract: To develop a method for the determination of 5-fluorouracil in plasma by direct protein precipitation coupled with tandem mass spectrometry. Plasma samples were treated with 0.1 mol·L−1 zinc sulfate as protein precipitator, and the supernatant was taken after centrifugation for direct determination. Using 5-fluorouracil-13C,15N2 as internal standards and Shimadzu shim pack GIST-HP C18-AQ (100 mm × 2.1 mm I.D., 1.9 μm) as chromatographic column; Water (phase A) - methanol (phase B) as mobile phase; Gradient elution: 0—1 min, 5% B; 1—2 min, 5%B→95%B; 2—2.5 min, 95%B; 2.5—2.6 min, 95%B→5%B; 2.6—5 min, 5% B; Flow rate: 0.3 mL∙min−1; Column temperature: 35 ℃; Injection volume: 5 μL; Mass spectrometry quantitative analysis was carried out by using ESI and multi reaction monitoring negative ion mode (MRM); Detection ion pair: 5-fluorouracil m/z 129.1→42.1; 5-fluorouracil-13C,15N2 internal standard m/z 132.1→44.1. The correlation coefficient was greater than 0.999. The determination accuracy of the quality control was close to the theoretical value. The intra batch and inter batch accuracy were in the range of 94.8%—99.0%, and the RSD were in the range of 0.9%—4.8%. The recovery of 5-fluorouracil were in the range of 95.6%—99.8%. The matrix factor were in the range of 0.92—0.96, and the normalized matrix factor of internal standard were in the range of 0.99—1.00. The relative deviation RE between each measured concentration and the marked concentration under all conditions of the stability test were in the range of -5.2%—1.7%. This method has the advantages of simple pretreatment, fast analysis speed, high sensitivity, specificity and good stability, and can be used for the monitoring 5-fluorouracil.
-
表 1 MRM参数
Table 1. MRM parameters
名称 母离子(m/z) 子离子(m/z) Q1 Pre Bias /V CE/V Q3 Pre Bias/V 5-氟尿嘧啶 129.1 42.1 10 17 14 5-氟尿嘧啶-13C,15N2 132.1 44.1 10 17 14 表 2 准确度及精密度考察结果(n=6)
Table 2. Results of accuracy and precision (n=6)
质控品 浓度/(ng·mL−1) 批内 批间 准确度/% 精密度/% 准确度/% 精密度/% LQC 20 96.5 2.7 94.8 4.8 MQC 200 99.0 1.1 97.6 3.6 HQC 8000 97.7 0.9 97.1 1.7 表 3 提取回收率及基质效应 (n=6)
Table 3. Extraction recovery and matrix effect (n=6)
考察浓度/ (ng·mL−1) 提取回收率/% RSD/% 基质因子 RSD/% 内标归一化基质因子 RSD/% 20 95.6 2.6 0.92 3.5 0.99 3.2 200 98.8 2.4 0.95 2.6 0.99 2.1 8000 99.8 2.0 0.96 2.3 1.00 1.7 表 4 稳定性结果 (n=6)
Table 4. Stability results (n=6)
标示浓度/(ng·mL−1) 室温放置12 h 4 ℃放置24 h −20℃反复冻融3次 −80 ℃放置1个月 5 ℃自动进样器放置24 h RE% RSD/% RE% RSD/% RE% RSD/% RE% RSD/% RE% RSD/% 20 −4.4 2.7 −2.3 2.2 −4.3 2.8 −2.3 2.7 −5.2 3.1 200 −3.4 2.5 −2.1 2.5 −1.9 1.7 −2.6 2.5 −3.5 2.3 8000 −1.7 2.1 −0.8 1.7 0.2 1.9 1.7 2.1 −1.4 1.6 -
[1] 封敬颖, 边静, 崔毅轩, 等. 中空纤维离心超滤结合高效液相色谱法测定5-氟尿嘧啶的血药浓度[J]. 中国医院药学杂志, 2021, 41(13): 1305-1308. [2] 时静, 陈海生, 段存贤, 等. 5-氟尿嘧啶治疗药物监测的研究现状[J]. 中国临床药理学杂志, 2016, 32(11): 1053-1056. [3] LEE J J, BEUMER J H, CHU E. Therapeutic drug monitoring of 5-fluorouracil[J]. Cancer Chemotherapy and Pharmacology, 2016, 78(3): 447-464. doi: 10.1007/s00280-016-3054-2 [4] 何光照, 刘茜, 李小倩, 等. 氟尿嘧啶类药物个体化用药研究进展[J]. 中国医院药学杂志, 2018, 38(6): 679-683. [5] 范先煜, 汪硕闻, 范国荣. LC-MS/MS法同时检测人血浆中氟尿嘧啶、尿嘧啶和二氢尿嘧啶的浓度及其临床应用[J]. 药学服务与研究, 2021, 21(1): 12-18. [6] 曲恒燕, 郝光涛, 高洪志, 等. HPLC-MS/MS测定人血浆中5-氟尿嘧啶的浓度[J]. 药物分析杂志, 2013, 33(2): 259-262. [7] 佟志强, 吴东媛, 张娟, 等. UPLC-MS/MS法同时测定人血浆中5-FU及其代谢产物5-FUH2的浓度及应用[J]. 中国药房, 2021, 32(4): 480-484. [8] QIN W, WANG X X, CHEN W Q, et al. An invitro approach to simulate the process of 5-fluorouracil degradation with dihydropyrimidine dehydrogenase: The process in accordance to the first-order kinetic reaction[J]. Xenobiotica, 2021, 51(1): 24-30. doi: 10.1080/00498254.2020.1799451 [9] RADOVANOVIC M, SCHNEIDER J J, SHAFIEI M, et al. Measurement of 5- fluorouracil, capecitabine and its metabolite concentrations in blood using volumetric absorptive microsampling technology and LC-MS/MS[J]. Journal of Chromatography B, 2022, 1188: 123075. doi: 10.1016/j.jchromb.2021.123075 [10] LIU H Y, DING L, YU Y, et al. Comparison of three derivatization reagents for the simultaneous determination of highly hydrophilic pyrimidine antitumor agents in human plasma by LC-MS/MS[J]. Journal of Chromatography B, 2012, 893/894: 49-56. doi: 10.1016/j.jchromb.2012.02.033 [11] 鞠颖慧, 周琰, 彭颖斐, 等. 液相色谱串联质谱检测血浆5-氟尿嘧啶方法的建立及其临床应用[J]. 中华医学杂志, 2016, 96(10): 817-821. doi: 10.3760/cma.j.issn.0376-2491.2016.10.014