-
随着国家经济发展以及人民生活水平的提高,城市生活垃圾的产量增长迅速。截至2019年,我国196个大、中型城市生活垃圾产量已达2.4×109 t,较2018年同期增长14.3%[1]。卫生填埋作为城市生活垃圾的主要处置方式之一,被国内外广泛采用[2-3]。然而生活垃圾在填埋过程中由于垃圾发酵、地表水及地下水的渗透作用,导致垃圾填埋场生成大量高污染性的有毒有害有机废水,即垃圾渗滤液[4]。垃圾渗滤液作为一类含高质量浓度氨氮(NH4+-N)的有机难处理废水,具有显著的低碳/氮比(C/N)水质特征[5]。特别是填埋场老龄垃圾渗滤液的C/N通常低于3.0[6],若采用传统硝化反硝化生物处理工艺往往需要大量的曝气能耗投入及有机碳源补充,不仅运行成本高昂且易造成大量温室气体排放[7]。此外,由于老龄垃圾渗滤液中除含有高质量浓度NH4+-N外,还赋存大量抗生素抗性基因、药物及个人护理品、全氟化合物等大量新污染物,从而使得老龄垃圾渗滤液生物毒性较高,严重影响垃圾渗滤液生物脱氮工艺的稳定性[8]。
近些年随着生物脱氮技术的快速发展,涌现出许多新型生物脱氮工艺,如短程硝化反硝化(partial nitrification and denitrification,PND)、厌氧氨氧化以及硫驱动自养反硝化(sulfur-driven autotrophic denitrification,SdAD)等工艺[9-10]。PND工艺可通过优化反应系统中游离氨(free ammonia,FA)及溶解氧(dissolved oxygen,DO)质量浓度,进而将硝化反应控制在短程硝化阶段,使老龄垃圾渗滤液中的NH4+-N仅氧化为亚硝态氮(NO2−-N)而不继续氧化为硝态氮(NO3−-N),随后通过短程反硝化反应将NO2−-N还原为氮气(N2)[11]。尽管较传统硝化反硝化工艺,PND工艺可节省约25%的曝气需氧量及40%的有机碳源消耗[12],但短程反硝化过程仍需补充有机碳源才能实现老龄垃圾渗滤液的高效深度脱氮。自养反硝化工艺则可无需有机碳源,仅通过无机电子供体即可实现垃圾渗滤液中硝态氮(NOx−-N,包括NO2−-N和NO3−-N)的高效脱除[10]。其中厌氧氨氧化自养反硝化工艺可利用NH4+-N为电子供体,NO2−-N为电子受体,在厌氧条件下实现NO2−-N与NH4+-N同步去除[13]。由于PND工艺能实现渗滤液中NH4+-N向NO2−-N的部分硝化,因此,当前许多研究尝试将PND工艺与厌氧氨氧化工艺相结合,以达到零碳源投加老龄垃圾渗滤液深度脱氮的效果[14-15]。LI等[16]采用短程硝化-厌氧氨氧化耦合工艺处理老龄垃圾渗滤液,结果表明在未补充任何有机碳源条件下,耦合工艺可实现约85.0%的总氮(total nitrogen,TN)去除。但受限于厌氧氨氧化自养脱氮工艺自身缺陷,其理论上会产生约进水总氮11%的NO3−-N[17],从而导致出水中含有较多的NO3−-N无法被彻底反硝化去除,使得短程硝化-厌氧氨氧化耦合工艺总氮去除效果不佳。
与厌氧氨氧化工艺利用NH4+-N作为电子供体不同,SdAD工艺在缺氧条件下可利用硫化物(S0、S2−、S2O32−等)作为电子供体进行自养反硝化,其中单质硫(S0)作为电子供体的脱氮反应公式如式(1)~(2)所示[18]。S0作为SdAD自养反硝化电子供体具有以下优势:1) S0作为石化行业副产物,价格低廉且易获取;2) S0可充当生物滤池填料,在脱氮的同时能有效过滤渗滤液中的大颗粒杂质;3)工艺脱氮稳定性高、耐负荷冲击等[19-20]。因此,SdAD工艺通常采用S0填充床反应器将低C/N废液中的NOx−-N还原为N2[21]。LI等[22]采用PND耦合以S0为电子供体的SdAD工艺处理低C/N废水,在高FA质量浓度调控下PND工艺出水NO2−-N积累率可达89.5%,随后SdAD工艺能实现约70%的NO2−-N去除效果。然而,目前PND-SdAD耦合工艺对处理具有高生物抑制性的老龄垃圾渗滤液的脱氮性能仍有待研究。
鉴于此,本研究以佛山市白石坳垃圾填埋场老龄垃圾渗滤液为研究对象,采用中试规模的新型PND-SdAD耦合工艺对其进行零碳源投加深度脱氮。考察了PND-SdAD耦合工艺在垃圾渗滤液实际处理工程中的脱氮处理效能,优化了各工艺单元控制条件,分析了各工艺单元微生物种群多样性,评估了各工艺单元出水生物毒性,并对耦合工艺综合运行费用进行初步核算,以期为老龄垃圾渗滤液等低C/N废水深度脱氮的实际工程应用提供相关实验基础和技术支持。
老龄垃圾渗滤液PND-SdAD耦合工艺深度脱氮
Advanced nitrogen removal from mature landfill leachate by coupled pilot PND-SdAD process
-
摘要: 针对老龄垃圾渗滤液具有低碳/氮比(C/N)水质特征和传统生物硝化反硝化工艺存在的高曝气能耗与碳源投加量大的问题,本研究通过构建中试规模短程硝化反硝化(partial nitrification and denitrification,PND)-硫驱动自养反硝化(sulfur-driven autotrophic denitrification,SdAD)耦合工艺,以期实现老龄垃圾渗滤液在低曝气能耗和零碳源投加条件下的深度脱氮。中试试验结果表明,PND工艺单元稳定运行阶段可对老龄垃圾渗滤液原液实现(86.0±0.8)%的总氮(total nitrogen,TN)去除效果,随后SdAD自养工艺单元可进一步去除老龄垃圾渗滤液原液(12.9±0.4)%的TN。耦合工艺出水渗滤液TN质量浓度为(38.7±4.6) mg·L−1,满足国家生活垃圾填埋场污染物控制标准(GB16889-2008)中TN的排放要求。同时,PND-SdAD耦合工艺出水渗滤液生物毒性降低约64.6%,毒性等级可由高毒降至低毒,有效降低了老龄垃圾渗滤液的排放风险。此外,综合运行成本分析表明,该耦合工艺垃圾渗滤液吨水综合处理成本仅为24.4元。Abstract: Aiming at the water quality characteristic of mature landfill leachate with a low carbon-to-nitrogen ratio (C/N), and the challenges faced by the conventional biological nitrification and denitrification processes such as high aeration energy consumption and large amount of carbon source dosage, a pilot-scale partial nitrification and denitrification coupled with sulfur-driven autotrophic denitrification (PND-SdAD) process was implemented to achieve advanced nitrogen removal from mature landfill leachate under the conditions of low aeration energy consumption and zero carbon source addition in this study. The results of the pilot experiment showed that the PND process could achieve a total nitrogen (TN) removal efficiency of (86.0±0.8)% from mature landfill leachate during the stabilized operation stage. Subsequently, the SdAD autotrophic process could further remove TN by (12.9%±0.4)% from the mature leachate. The TN mass concentration of leachate effluent from the coupled PND-SdAD process was only (38.7±4.6) mg·L−1, meeting the TN discharge standard of the pollution control standard for the domestic landfill (GB16889-2008). Meanwhile, the biological toxicity of leachate effluent from the coupled PND-SdAD process decreased by approximately 64.6%, and the toxicity level of leachate decreased from high to low, which effectively decreased the risk of leachate discharge. Moreover, based on the economic analysis, the comprehensive operating cost for advanced nitrogen removal from mature landfill leachate by this coupled process was only 24.4 RMB/m3.
-
表 1 垃圾渗滤液中试PND-SdAD耦合工艺深度脱氮综合运行成本
Table 1. Comprehensive operating cost of pilot-scale PND-SdAD combined process for advanced nitrogen removal from landfill leachate
项目 单价 消耗量 运行费用/(元·t−1) 电费 0.89 元·(kWh)−1 91.2 kWh·d−1 20.3 电子供体成本 2.4 元·kg−1 5.09 kg·d−1 3.1 药剂费 8 元·kg−1 0.5 kg·d−1 1 合计 — — 24.4 -
[1] 中华人民共和国生态环境部. 2020年全国大、中城市固体废物污染环境防治年报[R]. 北京, 中华人民共和国生态环境部, 2020, 9-10. [2] MUKHERJEE C, DENNEY J, MBONIMPA E G, et al. A review on municipal solid waste-to-energy trends in the USA[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109512. doi: 10.1016/j.rser.2019.109512 [3] 黄林, 杨磊. 我国城市生活垃圾处理现状与展望[J]. 可持续发展, 2022, 12(5): 1347-1354. [4] NAVEEN B P, MAHAPATRA D M, SITHARAM T G, et al. Physico-chemical and biological characterization of urban municipal landfill leachate[J]. Environmental Pollution, 2017, 220(Pt A): 1-12. [5] TENG C, ZHOU K, PENG C, et al. Characterization and treatment of landfill leachate: A review[J]. Water Research, 2021, 203: 117525. doi: 10.1016/j.watres.2021.117525 [6] KULIKOWASKA D and KLIMIUK E. The effect of landfill age on municipal leachate composition[J]. Bioresource Technology, 2008, 99(13): 5981-5985. doi: 10.1016/j.biortech.2007.10.015 [7] ITOKAWA H, HANAKI K and MATSUO T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Water Research, 2001, 35(3): 657-664. doi: 10.1016/S0043-1354(00)00309-2 [8] YI X, TIAN N H, YIN T, et al. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J]. Water Research, 2017, 121: 46-60. doi: 10.1016/j.watres.2017.05.008 [9] ZHANG R C, XU X J, CHEN C, et al. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification[J]. Water Research, 2018, 143: 355-366. doi: 10.1016/j.watres.2018.06.053 [10] CAPUA F D, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362: 922-937. doi: 10.1016/j.cej.2019.01.069 [11] DUAN H, YE L, LU X, et al. Overcoming nitrite oxidizing bacteria adaptation through alternating sludge treatment with free nitrous acid and free ammonia[J]. Environmental Science & Technology, 2019, 53(4): 1937-1946. [12] WANG J, LI L, LIU Y, et al. A review of partial nitrification in biological nitrogen removal processes: from development to application[J]. Biodegradation, 2021, 32(3): 229-249. doi: 10.1007/s10532-021-09938-x [13] TIAN T and YU H Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters[J]. Bioresource Technology, 2020, 299: 122686. doi: 10.1016/j.biortech.2019.122686 [14] QIU J, LI X, PENG Y, et al. Advanced nitrogen removal from landfill leachate via a two-stage combined process of partial nitrification-anammox (PN-A) and partial denitrification-anammox (PD-A)[J]. Science of Total Environment, 2022, 810: 151186. doi: 10.1016/j.scitotenv.2021.151186 [15] ZHANG F, PENG Y, MIAO L, et al. A novel simultaneous partial nitrification anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate[J]. Chemical Engineering Journal, 2017, 313: 619-628. doi: 10.1016/j.cej.2016.12.105 [16] LI H, ZHOU S, MA W, et al. Long-term performance and microbial ecology of a two-stage PN-ANAMMOX process treating mature landfill leachate[J]. Bioresource Technology, 2014, 159: 404-411. doi: 10.1016/j.biortech.2014.02.054 [17] DU R, CAO S, ZHANG H, et al. Flexible nitrite supply alternative for mainstream anammox: Advances in enhancing process stability[J]. Environmental Science & Technology, 2020, 54(10): 6353-6364. [18] WANG T, LI X, WANG H, et al. Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: A review[J]. Water Research, 2023, 245: 120569. doi: 10.1016/j.watres.2023.120569 [19] ZENG C, SU Q, PENG L, et al. Elemental sulfur-driven autotrophic denitrification for advanced nitrogen removal from mature landfill leachate after PN/A pretreatment[J]. Chemical Engineering Journal, 2021, 410: 128256. doi: 10.1016/j.cej.2020.128256 [20] SAHINKAYA E, KILIC A and DUYGULU, B. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent[J]. Water Research, 2014, 60: 210-217. doi: 10.1016/j.watres.2014.04.052 [21] HUANG S, ZHENG Z, WEI Q, et al. Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions[J]. Bioresource Technology, 2019, 294: 122176. doi: 10.1016/j.biortech.2019.122176 [22] LI Y, CHEN B, ZHANG X, et al. Elemental sulfur autotrophic partial denitrification (S0-PDN) with high pH and free ammonia control strategy for low-carbon wastewater: From performance to microbial mechanism[J]. Chemical Engineering Journal, 2023, 474: 145419. doi: 10.1016/j.cej.2023.145419 [23] 国家环境保护总局. 水和废水监测分析方法 (第四版)[M]. 北京, 中国环境科学出版社, 2002, 88-284. [24] 那广水, 张月梅, 陈彤, 等. 发光细菌法评价排污口污水中总有机污染物毒性[J]. 中国环境监测, 2010, 26(5): 61-64. doi: 10.3969/j.issn.1002-6002.2010.05.017 [25] XU H, DENG Y, ZOU J, et al. Nitrification performance and bacterial community dynamics in a membrane bioreactor with elevated ammonia concentration: The combined inhibition effect of salinity, free ammonia and free nitrous acid on nitrification at high ammonia loading rates[J]. Science of Total Environment, 2022, 831: 154972. doi: 10.1016/j.scitotenv.2022.154972 [26] 刘牡, 彭永臻, 吴莉娜, 等. FA与FNA对两级UASB-A/O处理垃圾渗滤液短程硝化的影响[J]. 化工学报, 2010, 61(1): 172-179. [27] KOSTRYTSIA A, PAPIRIO S, FRUNZO L, et al. Elemental sulfur-based autotrophic denitrification and denitritation: Microbially catalyzed sulfur hydrolysis and nitrogen conversions[J]. Journal of Environmental Management, 2018, 211: 313-322. [28] SAHINKAYA E, DURSUM N, KILIC A, et al. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production[J]. Water Research, 2011, 45(20): 6661-6667. doi: 10.1016/j.watres.2011.09.056 [29] 赵晴, 周浩, 吕慧, 等. AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用[J]. 环境工程学报, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110 [30] 韩梦欣, 周明达, 汪涵, 等. 污水短程硝化体系氨氧化菌与亚硝酸盐氧化菌的生态学研究进展[J]. 微生物学通报, 2023, 50(4): 1621-1638. [31] SHI S, HE L, ZHOU Y, et al. Response of nitrogen removal performance and microbial community to a wide range of pH in thermophilic denitrification system[J]. Bioresource Technology, 2022, 352: 127061. doi: 10.1016/j.biortech.2022.127061 [32] SHAO M F, ZHANG T and FANG H H. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications[J]. Applied Microbiology And Biotechnology, 2010, 88(5): 1027-1042. doi: 10.1007/s00253-010-2847-1 [33] MARC S J, GIJS K and MIKE S M. Key physiology of anaerobic ammonium oxidation[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1999, 65(7): 3248-3250. doi: 10.1128/AEM.65.7.3248-3250.1999 [34] 徐晨璐, 尹志轩, 李春雨, 等. 垃圾渗滤液补充反硝化碳源强化脱氮效果[J]. 环境工程学报, 2019, 13(5): 1106-1112. doi: 10.12030/j.cjee.2019512