高级氧化法测定化学需氧量的原理及应用
Application of advanced oxidation technologies in the determination of chemical oxygen demand
-
摘要: 化学需氧量(COD)是衡量水体有机污染程度的首选指标,COD值越高,水体污染越严重.目前,COD测定方法常采用传统的国标法,但该方法存在耗时长、操作繁琐以及高毒性化学试剂导致的二次污染等问题,因此在实际应用中受到一定限制.近年来,测定COD的高级氧化法由于抛弃了传统的铬盐氧化剂,以氧化活性极强的·OH自由基为氧化剂,实现了有机污染物的彻底氧化,从而达到COD检测的目的.测定COD的高级氧化法主要包括:臭氧氧化、电化学氧化、光催化氧化以及光电催化氧化法,本文主要介绍了这些高级氧化法测定COD的原理和近些年的应用发展,并分析了各种测定方法的利弊.其中,电化学氧化以及光电催化法可直接以反应过程中引起的电学参数为分析信号来量化COD值,具有环保、快速、易于实现自动化和在线分析监测的优点,是目前最具前景的测定方法,也是今后COD检测研究的方向和热点.Abstract: Chemical oxygen demand (COD) is a preferred parameter for measuring the degree of organic pollution. The higher the COD value is, the more serious the water pollution is. At present, the method for determining COD often adopts the traditional standard method. However, this method has a few disadvantages that limit its applications, such as long time duration, complicated operation and secondary pollution caused by highly toxic chemical reagents. In recent years, advanced oxidation methods for COD determination including ozone oxidation, electrochemical oxidation, photocatalytic oxidation and photoelectrocatalytic oxidation use the highly reactive hydroxyl radical (·OH) as oxidant rather than the conventional oxidizing agents. Complete oxidation of organic pollutants and determination of COD have been achieved using these methods. This article is devoted in summarizing the principle and application for determination of COD by means of advanced oxidation methods and analyzing the advantages and disadvantages of each method. Given the characteristic of directly quantifying the COD values by electrical parameters during the reaction process of electrochemical oxidation and photoelectrocatalytic oxidation, advantages, such as environment friendliness, rapid analytical speed, online automatic monitoring are achieved. They are the most promising detection methods, and meanwhile, are the development directions and hotspot of COD determination in the future.
-
Key words:
- chemical oxygen demand /
- advanced oxidation /
- radical /
- electrochemistry /
- photoelectrocatalytic
-
[1] LI B X, ZHANG Z J, WANG J, et al. Chemiluminescence system for automatic determination of chemical oxygen demand using flow injection analysis[J]. Talanta, 2003, 61(5):651-658. [2] HIMEBAUGH R R, SMITH M J. Semi-Micro tube method for chemical oxygen demand[J]. Analytical Chemistry, 1979, 51(7):1085-1087. [3] BELKIN S, BRENNER A, ABELIOVICH A. Effect of inorganic constituents on chemical oxygen demand-II. organic carbon to halogen ratios determine halogen interference[J]. Water Research, 1992, 26(12):1583-1588. [4] ABUZAID N S, AL-MALACK M H, EL-MUBARAK A H. Alternative method for determination of the chemical oxygen demand for colloidal polymeric wastewater[J]. Bulletin of Environmental Contamination & Toxicology, 1997, 59(4):626-630. [5] HU Y G, YANG Z Y. A simple chemiluminescence method for determination of chemical oxygen demand values in water[J]. Talanta, 2004, 63(3):521-526. [6] LI J, LUO G B, HE L J, et al. Analytical approaches for determining chemical oxygen demand in water bodies:A review[J]. Critical Reviews in Analytical Chemistry, 2017, 48(1):47-65. [7] 郑青, 韩海波, 周保学, 等. 化学需氧量(COD)快速测定新方法研究进展[J]. 科学通报, 2009, 21(54):3241-3250. ZHENG Q, HAN H B, ZHOU B X, et al. Progress in new methods for rapid determination of chemical oxygen demand (COD)[J]. Chinese Sci Bull, 2009, 21(54):3241-3250(in Chinese).
[8] GUOBING L. A review on detection methods of chemical oxygen demand in water bodies[J]. Rock & Mineral Analysis, 2013, 32(6):860-874. [9] DENG Y, ZHAO R. Advanced oxidation processes (AOPs) in wastewater treatment[J]. Current Pollution Reports, 2015, 1(3):167-176. [10] OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment:Principles and applications:A review[J]. Critical Reviews in Environmental Science & Technology, 2014, 44(23):2577-2641. [11] PAILLARD H, BRUNET R, DORA M. Application of oxidation by a combined ozone/ultraviolet radiation system to the treatment of natural water[J]. Ozone Science & Engineering, 1987, 9(4):391-418. [12] PRENGLE H W. Experimental rate constants and reactor considerations for the destruction of micropollutants and trihalomethane precursors by ozone with ultraviolet radiation[J]. Environmental Science & Technology, 1983, 17(12):743-747. [13] HAYASHI J I, IKEDA J, KUSAKABE K, et al. Decomposition rate of volatile organochlorines by ozone and utilization efficiency of ozone with ultraviolet radiation in a bubble-column contactor[J]. Water Research, 1993, 27(6):1091-1097. [14] GLAZE W H, KANG J-W, CHAPIN D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone:Science & Engineering, 1987, 9(4):335-352. [15] PEYTON G R, GLAZE W H. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone[J]. Environmental Science & Technology, 1988, 22(7):761-767. [16] YU X D, YANG H Z, SUN L. Determination of chemical oxygen demand using UV/O3[J]. Water, Air, & Soil Pollution, 2016, 227(12):458-467. [17] JIN B H, HE Y, SHEN J C, et al. Measurement of chemical oxygen demand (COD) in natural water samples by flow injection ozonation chemiluminescence (FI-CL) technique[J]. Journal of Environmental Monitoring Jem, 2004, 6(8):673-678. [18] POPOVICH N, C. JOHNSON D. Amperometric detection of biologically significant sulfur-containing compounds at Bi(V)-doped PbO2 film electrodes[J]. 1999, 11:934-939. [19] LEE K-H, ISHIKAWA T, MCNIVEN S J, et al. Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode[J]. Analytica Chimica Acta, 1999, 398(2):161-171. [20] LEE K-H, ISHIKAWA T, MCNIVEN S, et al. Chemical oxygen demand sensor employing a thin layer electrochemical cell[J]. Analytica Chimica Acta, 1999, 386(3):211-220. [21] KONDO T, TAMURA Y, HOSHINO M, et al. Direct determination of chemical oxygen demand by anodic decomposition of organic compounds at a diamond electrode[J]. Analytical Chemistry, 2014, 86(16):8066-8072. [22] 李嘉庆, 李洛平, 郑蕾, 等. 纳米PbO2修饰电极安培检测器流动注射法快速测定化学需氧量[J]. 高等学校化学学报, 2005, 26(10):1808-1811. LI J Q, LI L P, ZHENG L, et al. Determination of chemical oxygen demand by flow injection analysis using amperometric detector with nano PbO2 modified electrode[J]. Chemical Journal of Chinese Universities, 2005, 26(10):1808-1811(in Chinese).
[23] [24] 王楠. 基于β-PbO2的电化学COD传感器设计制备及应用研究[D]. 北京:北京化工大学, 2017. WANG N. Design and application of electrochemical COD sensor based on β-PbO2[D]. Beijing:Beijing University of Chemical Technology, 2017(in Chinese). [25] LI J Q, LI L P, ZHENG L, et al. Amperometric determination of chemical oxygen demand with flow injection analysis using F-PbO2 modified electrode[J]. Analytica Chimica Acta, 2005, 548(1):199-204. [26] WESTBROEK P, TEMMERMAN E. In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring-Pt/PbO2 disc electrode[J]. Analytica Chimica Acta, 2001, 437(1):95-105. [27] 谢振伟, 于红, 但德忠, 等. 电化学法直接快速测定COD初步研究[J]. 环境工程, 2004, 22(3):60-63. XIE Z W, YU H, DAN D Z, et al. Preliminary study on electrochemical method for direct and rapid determination of CODCr[J]. Environmental Engineering, 2004, 22(3):60-63(in Chinese).
[28] MA C J, TAN F, ZHAO H M, et al. Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode[J]. Sensors & Actuators B Chemical, 2011, 155(1):114-119. [29] MO H L, TANG Y, WANG X Z, et al. Development of a three-dimensional structured carbon fiber felt/β-PbO2 electrode and its application in chemical oxygen demand determination[J]. Electrochimica Acta, 2015, 176:1100-1107. [30] KONG J T, SHI S Y, KONG L C, et al. Preparation and characterization of PbO electrodes doped with different rare earth oxides[J]. Electrochimica Acta, 2008, 53(4):2048-2054. [31] SHMYCHKOVA O, LUK'YANENKO T, AMADELLI R, et al. Electrodeposition of Ce-doped PbO2[J]. Journal of Electroanalytical Chemistry, 2013, 706(10):86-92. [32] MO H L, TANG Y, WANG N, et al. Performance improvement in chemical oxygen demand determination using carbon fiber felt/CeO2-β-PbO2 electrode deposited by cyclic voltammetry method[J]. Journal of Solid State Electrochemistry, 2016, 20(8):2179-2189. [33] DROOG J M M, ALDERLIESTEN C A, ALDERLIESTEN P T, et al. Initial stages of anodic oxidation of polycrystalline copper electrodes in alkaline solution[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1980, 111(1):61-70. [34] ROSSLERFROMME R, SCHOLZ F. A solid composite electrode for the determination of the electrochemical oxygen demand of aqueous samples[J]. Fresenius Journal of Analytical Chemistry, 1996, 356(3-4):197-201. [35] JONES B M, SAKAJI R H, DAUGHTON C G. Comparison of the microcolorimetric and macrotitrimetric methods for chemical oxygen demand of oil shale wastewaters[J]. Analytical Chemistry, 1985, 57(12):2334-2337. [36] MARIOLI J M, KUWANA T. Electrochemical characterization of carbohydrate oxidation at copper electrodes[J]. Electrochimica Acta, 1992, 37(7):1187-1197. [37] KUNZE J, MAURICE V, KLEIN L H, et al. In situ scanning tunneling microscopy study of the anodic oxidation of Cu(111) in 0.1 M NaOH[J]. The Journal of Physical Chemistry B, 2001, 105(19):4263-4269. [38] HELI H, ZARGHAN M, JABBARI A, et al. Electrocatalytic oxidation of the antiviral drug acyclovir on a copper nanoparticles-modified carbon paste electrode[J]. Journal of Solid State Electrochemistry, 2010, 14(5):787-795. [39] LIU J P, YE J Q, XU C W, et al. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti[J]. Electrochemistry Communications, 2007, 9(9):2334-2339. [40] SILVA C R, CONCEICAO C D C, BONIFACIO V G, et al. Determination of the chemical oxygen demand (COD) using a copper electrode:a clean alternative method[J]. Journal of Solid State Electrochemistry, 2009, 13(5):665-669. [41] YANG J Q, CHEN J W, ZHOU Y K, et al. A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand[J]. Sensors & Actuators B Chemical, 2011, 153(1):78-82. [42] BADR I H A, HASSAN H H, HAMED E, et al. Sensitive and green method for determination of chemical oxygen demand using a nano-copper based electrochemical sensor[J]. Electroanalysis, 2017, 29(10):1-10. [43] HASSAN H H, BADR I H A, ABDEL-FATAH H T M, et al. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film[J]. Arabian Journal of Chemistry, 2015, 11(2):171-180. [44] MARTINEZ-HUITLE C A, FERRO S, BATTISTI A D. Electrochemical incineration of oxalic acid:Role of electrode material[J]. Electrochimica Acta, 2004, 49(22-23):4027-4034. [45] KIM M, YOUN S M, SHIN S H, et al. Practical field application of a novel BOD monitoring system[J]. Journal of Environmental Monitoring Jem, 2003, 5(4):640-643. [46] GEUN J B, MIN Y S, HO C C, et al. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit[J]. Journal of Environmental Monitoring Jem, 2007, 9(12):1352-1357. [47] BOGDANOWICZ R, CZUPRYNIAK J, GNYBA M, et al. Determination of chemical oxygen demand (COD) at boron-doped diamond (BDD) sensor by means of amperometric technique[J]. Procedia Engineering, 2012, 47(12):1117-1120. [48] YU X M, ZHOU M H, HU Y S, et al. Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode:a mini review[J]. Environmental Science & Pollution Research, 2014, 21(14):8417-8431. [49] SHI Y L, YAO Y Y, HUANG S Y, et al. Research progress in the application of BDD electrode to refractory wastewater treatment[J]. Industrial Water Treatment, 2017, 37(11):11-16. [50] 只金芳, 田如海. 金刚石薄膜电化学[J]. 化学进展, 2005, 17(1):55-64. ZHI J F, TIAN R H. Electrochemistry of diamond thin film[J]. Progress in Chemistry, 2015, 17(1):55-63(in Chinese).
[51] RUB-JU REZ H, COTILLAS S, S EZ C, et al. Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation[J]. Applied Catalysis B Environmental, 2016, 188:305-312. [52] YIN J J, ZHANG W, ZHANG D M, et al. Electrochemical degradation of chlorobenzene on conductive-diamond electrode[J]. Diamond & Related Materials, 2016, 68:71-77. [53] YU H B, WANG H, QUAN X, et al. Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor[J]. Electrochemistry Communications, 2007, 9(9):2280-2285. [54] YU H B, MA C J, QUAN X, et al. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode[J]. Environmental Science & Technology, 2009, 43(6):1935-1939. [55] ADEWUYI Y G. Sonochemistry in environmental remediation. 1. combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water[J]. Environmental Science & Technology, 2005, 39(10):3409-3420. [56] WANG J, LI K, YANG C, et al. Ultrasound electrochemical determination of chemical oxygen demand using boron-doped diamond electrode[J]. Electrochemistry Communications, 2012, 18(18):51-54. [57] BOGDANOWICZ R, CZUPRYNIAK J, GNYBA M, et al. Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond[J]. Sensors and Actuators B:Chemical, 2013, 189:30-36. [58] LEE S K, SONG M J, LIM D S. Morphology control of 3D-networked boron-doped diamond nanowires and its electrochemical properties[J]. Journal of Electroanalytical Chemistry, 2018, 820:140-145. [59] BRAGA N A, CAIRO C A A, MATSUSHIMA J T, et al. Diamond/porous titanium three-dimensional hybrid electrodes[J]. Journal of Solid State Electrochemistry, 2010, 14(2):313-321. [60] HE Y P, HUANG W M, CHEN R L, et al. Improved electrochemical performance of boron-doped diamond electrode depending on the structure of titanium substrate[J]. Journal of Electroanalytical Chemistry, 2015, 758:170-177. [61] BRAGA N A, BALDAN M R, FERREIRA N G. From micro to nanocrystalline diamond grown on 3D porous titanium matrix[J]. Journal of Materials Science, 2012, 47(1):23-40. [62] HE Y P, LIN H B, WANG X, et al. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation[J]. Chemical Communications, 2016, 52(51):8026-8029. [63] TIJANI J O, FATOBA O O, MADZIVIRE G, et al. A review of combined advanced oxidation technologies for the removal of organic pollutants from water[J]. Water Air & Soil Pollution, 2014, 225(9):2102-2132. [64] GARCIA-SEGURA S, DOSTA S, GUILEMANY J M, et al. Solar photoelectrocatalytic degradation of acid orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray[J]. Applied Catalysis B Environmental, 2013, 132-133(2):142-150. [65] AKPAN U G, HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:A review[J]. Journal of Hazardous Materials, 2009, 170(2):520-529. [66] ZANGENEH H, ZINATIZADEH A A L, HABIBI M, et al. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides:A comparative review[J]. Journal of Industrial & Engineering Chemistry, 2015, 26:1-36. [67] KIM Y C, LEE K H, SASAKI S, et al. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode[J]. Analytical Chemistry, 2000, 72(14):3379-3382. [68] KIM Y C, SASAKI S, YANO K, et al. Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis[J]. Analytica Chimica Acta, 2001, 432(1):59-66. [69] CAI Y F, FU X, GAO X L, et al. Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water[J]. Earth and Environmental Science, 2018, 121(2):22-39. [70] WANG H, ZHONG S H, HE Y, et al. Molecular sieve 4A-TiO2-K2Cr2O7 coexisted system as sensor for chemical oxygen demand[J]. Sensors & Actuators B Chemical, 2011, 160(1):189-195. [71] JAYAMOHAN H, SMITH Y R, GALE B K, et al. Photocatalytic microfluidic reactors utilizing titania nanotubes on titanium mesh for degradation of organic and biological contaminants[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):657-663. [72] LALHRIATPUIA C, TIWARI D, TIWARI A, et al. Immobilized nanopillars-TiO2 in the efficient removal of micro-pollutants from aqueous solutions:physico-chemical studies[J]. Chemical Engineering Journal, 2015, 281:782-792. [73] 艾仕云, 李嘉庆, 杨娅, 等. 一种新的光催化氧化体系用于化学需氧量的测定研究[J]. 高等学校化学学报, 2004, 25(5):823-826. AI S Y, LI J Q, YANG Y, et al. Determination of chemical oxygen demand with a new photocatalytic oxidation system[J]. Chemical Research In Chinese Universities, 2004, 25(5):823-826(in Chinese).
[74] AI S Y, LI J Q, YANG Y, et al. Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2-K2Cr2O7 system[J]. Analytica Chimica Acta, 2004, 509(2):237-241. [75] CHAI Y H, DING H C, ZHANG Z H, et al. Study on photocatalytic oxidation for determination of the low chemical oxygen demand using a nano-TiO2-Ce(SO4)2 coexisted system[J]. Talanta, 2006, 68(3):610-615. [76] SHEN S H, CHEN J, WANG M, et al. Titanium dioxide nanostructures for photoelectrochemical applications[J]. Progress in Materials Science, 2018, 98:299-385. [77] BYRNE C, SUBRAMANIAN G, PILLAI S C. Recent advances in photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2018, 6(3):3531-3555. [78] ZHU L H, CHEN Y E, WU Y H, et al. A surface-fluorinated-TiO2-KMnO4 photocatalytic system for determination of chemical oxygen demand[J]. Analytica Chimica Acta, 2006, 571(2):242-247. [79] LI S X, ZHENG F Y, CAI S J, et al. A visible light assisted photocatalytic system for determination of chemical oxygen demand using 5-sulfosalicylic acid in situ surface modified titanium dioxide[J]. Sensors & Actuators B Chemical, 2013, 188(11):280-285. [80] ZHANG Z H, YUAN Y, FANG Y J, et al. Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand[J]. Talanta, 2007, 73(3):523-528. [81] [82] SILVESTRE C I C, FRIGERIO C, SANTOS J L M, et al. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system[J]. Analytica Chimica Acta, 2011, 699(2):193-197. [83] ZHAO H J, JIANG D L, ZHANG S Q, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J]. Analytical Chemistry, 2004, 76(1):155-160. [84] ZHANG A Y, ZHOU M H, ZHOU Q X. A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent[J]. Analytica Chimica Acta, 2011, 686(1):133-143. [85] ZHANG Z, CHANG X, CHEN A. Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes[J]. Sensors and Actuators B:Chemical, 2016, 223:664-670. [86] QIU J, ZHANG S, ZHAO H. Nanostructured TiO2 photocatalysts for the determination of organic pollutants[J]. Journal of Hazardous Materials, 2012, 211-212:381-388. [87] JIANG D, ZHAO H, ZHANG S, et al. Photoelectrochemical measurement of phthalic acid adsorption on porous TiO2 film electrodes[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 156(1):201-206. [88] ZHANG S, ZHAO H, JIANG D, et al. Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell[J]. Analytica Chimica Acta, 2004, 514(1):89-97. [89] YUAN S J, MAO R Y, LI Y G, et al. Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determination of chemical oxygen demand[J]. Electrochimica Acta, 2012, 60(1):347-353. [90] ZHANG J L, ZHOU B X, ZHENG Q, et al. Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array[J]. Water Research, 2009, 43(7):1986-1992. [91] ZHENG Q, ZHOU B X, BAI J, et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J]. Advanced Materials, 2008, 20(5):1044-1049. [92] LI X J, YIN W P, LI J Y, et al. TiO2 nanotube sensor for online chemical oxygen demand determination in conjunction with flow injection technique[J]. Water Environment Research, 2014, 86(6):532-539. [93] WANG C, WU J C, WANG P F, et al. Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand[J]. Analytica Chimica Acta, 2013, 767:141-147. [94] MU Q H, LI Y G, ZHANG Q H, et al. TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelectrocatalysis[J]. Sensors and Actuators B:Chemical, 2011, 155(2):804-809. [95] HENG W X, ZHANG W, ZHANG Q H, et al. Photoelectrocatalysis microfluidic reactors utilizing hierarchical TiO2 nanotubes for determination of chemical oxygen demand[J]. Rsc Advances, 2016, 6(55):49824-49830. [96] LI J Q, ZHENG L, LI L P, et al. Photoelectro-synergistic catalysis at Ti/TiO2/PbO2 electrode and its application on determination of chemical oxygen demand[J]. Electroanalysis, 2010, 18(22):2251-2256. [97] QU X, TIAN M, CHEN S, et al. Determination of chemical oxygen demand based on novel photoelectro-bifunctional electrodes[J]. Electroanalysis, 2011, 23(5):1267-1275. [98] MOHAMED A E R, ROHANI S. Modified TiO2 nanotube arrays (TNTAs):Progressive strategies towards visible light responsive photoanode, a review[J]. Energy & Environmental Science, 2011, 4(4):1065-1086. [99] WANG C, WU J C, WANG P F, et al. Photoelectrocatalytic determination of chemical oxygen demand under visible light using Cu2O-loaded TiO2 nanotube arrays electrode[J]. Sensors & Actuators B Chemical, 2013, 181(3):1-8. [100] WANG X J, ZHANG S S, WANG H J, et al. Visible light photoelectrochemical properties of a hydrogenated TiO2 nanorod film and its application in the detection of chemical oxygen demand[J]. Rsc Advances, 2015, 5(93):76315-76320.
计量
- 文章访问数: 3037
- HTML全文浏览数: 3037
- PDF下载数: 75
- 施引文献: 0