LI B X, ZHANG Z J, WANG J, et al. Chemiluminescence system for automatic determination of chemical oxygen demand using flow injection analysis[J]. Talanta, 2003, 61(5):651-658.
HIMEBAUGH R R, SMITH M J. Semi-Micro tube method for chemical oxygen demand[J]. Analytical Chemistry, 1979, 51(7):1085-1087.
BELKIN S, BRENNER A, ABELIOVICH A. Effect of inorganic constituents on chemical oxygen demand-II. organic carbon to halogen ratios determine halogen interference[J]. Water Research, 1992, 26(12):1583-1588.
ABUZAID N S, AL-MALACK M H, EL-MUBARAK A H. Alternative method for determination of the chemical oxygen demand for colloidal polymeric wastewater[J]. Bulletin of Environmental Contamination & Toxicology, 1997, 59(4):626-630.
HU Y G, YANG Z Y. A simple chemiluminescence method for determination of chemical oxygen demand values in water[J]. Talanta, 2004, 63(3):521-526.
LI J, LUO G B, HE L J, et al. Analytical approaches for determining chemical oxygen demand in water bodies:A review[J]. Critical Reviews in Analytical Chemistry, 2017, 48(1):47-65.
郑青, 韩海波, 周保学, 等. 化学需氧量(COD)快速测定新方法研究进展[J]. 科学通报, 2009, 21(54):3241-3250. ZHENG Q, HAN H B, ZHOU B X, et al. Progress in new methods for rapid determination of chemical oxygen demand (COD)[J]. Chinese Sci Bull, 2009, 21(54):3241-3250(in Chinese).
GUOBING L. A review on detection methods of chemical oxygen demand in water bodies[J]. Rock & Mineral Analysis, 2013, 32(6):860-874.
DENG Y, ZHAO R. Advanced oxidation processes (AOPs) in wastewater treatment[J]. Current Pollution Reports, 2015, 1(3):167-176.
OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment:Principles and applications:A review[J]. Critical Reviews in Environmental Science & Technology, 2014, 44(23):2577-2641.
PAILLARD H, BRUNET R, DORA M. Application of oxidation by a combined ozone/ultraviolet radiation system to the treatment of natural water[J]. Ozone Science & Engineering, 1987, 9(4):391-418.
PRENGLE H W. Experimental rate constants and reactor considerations for the destruction of micropollutants and trihalomethane precursors by ozone with ultraviolet radiation[J]. Environmental Science & Technology, 1983, 17(12):743-747.
HAYASHI J I, IKEDA J, KUSAKABE K, et al. Decomposition rate of volatile organochlorines by ozone and utilization efficiency of ozone with ultraviolet radiation in a bubble-column contactor[J]. Water Research, 1993, 27(6):1091-1097.
GLAZE W H, KANG J-W, CHAPIN D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone:Science & Engineering, 1987, 9(4):335-352.
PEYTON G R, GLAZE W H. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone[J]. Environmental Science & Technology, 1988, 22(7):761-767.
YU X D, YANG H Z, SUN L. Determination of chemical oxygen demand using UV/O3[J]. Water, Air, & Soil Pollution, 2016, 227(12):458-467.
JIN B H, HE Y, SHEN J C, et al. Measurement of chemical oxygen demand (COD) in natural water samples by flow injection ozonation chemiluminescence (FI-CL) technique[J]. Journal of Environmental Monitoring Jem, 2004, 6(8):673-678.
POPOVICH N, C. JOHNSON D. Amperometric detection of biologically significant sulfur-containing compounds at Bi(V)-doped PbO2 film electrodes[J]. 1999, 11:934-939.
LEE K-H, ISHIKAWA T, MCNIVEN S J, et al. Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode[J]. Analytica Chimica Acta, 1999, 398(2):161-171.
LEE K-H, ISHIKAWA T, MCNIVEN S, et al. Chemical oxygen demand sensor employing a thin layer electrochemical cell[J]. Analytica Chimica Acta, 1999, 386(3):211-220.
KONDO T, TAMURA Y, HOSHINO M, et al. Direct determination of chemical oxygen demand by anodic decomposition of organic compounds at a diamond electrode[J]. Analytical Chemistry, 2014, 86(16):8066-8072.
李嘉庆, 李洛平, 郑蕾, 等. 纳米PbO2修饰电极安培检测器流动注射法快速测定化学需氧量[J]. 高等学校化学学报, 2005, 26(10):1808-1811. LI J Q, LI L P, ZHENG L, et al. Determination of chemical oxygen demand by flow injection analysis using amperometric detector with nano PbO2 modified electrode[J]. Chemical Journal of Chinese Universities, 2005, 26(10):1808-1811(in Chinese).
王楠. 基于β-PbO2的电化学COD传感器设计制备及应用研究[D]. 北京:北京化工大学, 2017. WANG N. Design and application of electrochemical COD sensor based on β-PbO2[D]. Beijing:Beijing University of Chemical Technology, 2017(in Chinese).
LI J Q, LI L P, ZHENG L, et al. Amperometric determination of chemical oxygen demand with flow injection analysis using F-PbO2 modified electrode[J]. Analytica Chimica Acta, 2005, 548(1):199-204.
WESTBROEK P, TEMMERMAN E. In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring-Pt/PbO2 disc electrode[J]. Analytica Chimica Acta, 2001, 437(1):95-105.
谢振伟, 于红, 但德忠, 等. 电化学法直接快速测定COD初步研究[J]. 环境工程, 2004, 22(3):60-63. XIE Z W, YU H, DAN D Z, et al. Preliminary study on electrochemical method for direct and rapid determination of CODCr[J]. Environmental Engineering, 2004, 22(3):60-63(in Chinese).
MA C J, TAN F, ZHAO H M, et al. Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode[J]. Sensors & Actuators B Chemical, 2011, 155(1):114-119.
MO H L, TANG Y, WANG X Z, et al. Development of a three-dimensional structured carbon fiber felt/β-PbO2 electrode and its application in chemical oxygen demand determination[J]. Electrochimica Acta, 2015, 176:1100-1107.
KONG J T, SHI S Y, KONG L C, et al. Preparation and characterization of PbO electrodes doped with different rare earth oxides[J]. Electrochimica Acta, 2008, 53(4):2048-2054.
SHMYCHKOVA O, LUK'YANENKO T, AMADELLI R, et al. Electrodeposition of Ce-doped PbO2[J]. Journal of Electroanalytical Chemistry, 2013, 706(10):86-92.
MO H L, TANG Y, WANG N, et al. Performance improvement in chemical oxygen demand determination using carbon fiber felt/CeO2-β-PbO2 electrode deposited by cyclic voltammetry method[J]. Journal of Solid State Electrochemistry, 2016, 20(8):2179-2189.
DROOG J M M, ALDERLIESTEN C A, ALDERLIESTEN P T, et al. Initial stages of anodic oxidation of polycrystalline copper electrodes in alkaline solution[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1980, 111(1):61-70.
ROSSLERFROMME R, SCHOLZ F. A solid composite electrode for the determination of the electrochemical oxygen demand of aqueous samples[J]. Fresenius Journal of Analytical Chemistry, 1996, 356(3-4):197-201.
JONES B M, SAKAJI R H, DAUGHTON C G. Comparison of the microcolorimetric and macrotitrimetric methods for chemical oxygen demand of oil shale wastewaters[J]. Analytical Chemistry, 1985, 57(12):2334-2337.
MARIOLI J M, KUWANA T. Electrochemical characterization of carbohydrate oxidation at copper electrodes[J]. Electrochimica Acta, 1992, 37(7):1187-1197.
KUNZE J, MAURICE V, KLEIN L H, et al. In situ scanning tunneling microscopy study of the anodic oxidation of Cu(111) in 0.1 M NaOH[J]. The Journal of Physical Chemistry B, 2001, 105(19):4263-4269.
HELI H, ZARGHAN M, JABBARI A, et al. Electrocatalytic oxidation of the antiviral drug acyclovir on a copper nanoparticles-modified carbon paste electrode[J]. Journal of Solid State Electrochemistry, 2010, 14(5):787-795.
LIU J P, YE J Q, XU C W, et al. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti[J]. Electrochemistry Communications, 2007, 9(9):2334-2339.
SILVA C R, CONCEICAO C D C, BONIFACIO V G, et al. Determination of the chemical oxygen demand (COD) using a copper electrode:a clean alternative method[J]. Journal of Solid State Electrochemistry, 2009, 13(5):665-669.
YANG J Q, CHEN J W, ZHOU Y K, et al. A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand[J]. Sensors & Actuators B Chemical, 2011, 153(1):78-82.
BADR I H A, HASSAN H H, HAMED E, et al. Sensitive and green method for determination of chemical oxygen demand using a nano-copper based electrochemical sensor[J]. Electroanalysis, 2017, 29(10):1-10.
HASSAN H H, BADR I H A, ABDEL-FATAH H T M, et al. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film[J]. Arabian Journal of Chemistry, 2015, 11(2):171-180.
MARTINEZ-HUITLE C A, FERRO S, BATTISTI A D. Electrochemical incineration of oxalic acid:Role of electrode material[J]. Electrochimica Acta, 2004, 49(22-23):4027-4034.
KIM M, YOUN S M, SHIN S H, et al. Practical field application of a novel BOD monitoring system[J]. Journal of Environmental Monitoring Jem, 2003, 5(4):640-643.
GEUN J B, MIN Y S, HO C C, et al. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit[J]. Journal of Environmental Monitoring Jem, 2007, 9(12):1352-1357.
BOGDANOWICZ R, CZUPRYNIAK J, GNYBA M, et al. Determination of chemical oxygen demand (COD) at boron-doped diamond (BDD) sensor by means of amperometric technique[J]. Procedia Engineering, 2012, 47(12):1117-1120.
YU X M, ZHOU M H, HU Y S, et al. Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode:a mini review[J]. Environmental Science & Pollution Research, 2014, 21(14):8417-8431.
SHI Y L, YAO Y Y, HUANG S Y, et al. Research progress in the application of BDD electrode to refractory wastewater treatment[J]. Industrial Water Treatment, 2017, 37(11):11-16.
只金芳, 田如海. 金刚石薄膜电化学[J]. 化学进展, 2005, 17(1):55-64. ZHI J F, TIAN R H. Electrochemistry of diamond thin film[J]. Progress in Chemistry, 2015, 17(1):55-63(in Chinese).
RUB-JU REZ H, COTILLAS S, S EZ C, et al. Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation[J]. Applied Catalysis B Environmental, 2016, 188:305-312.
YIN J J, ZHANG W, ZHANG D M, et al. Electrochemical degradation of chlorobenzene on conductive-diamond electrode[J]. Diamond & Related Materials, 2016, 68:71-77.
YU H B, WANG H, QUAN X, et al. Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor[J]. Electrochemistry Communications, 2007, 9(9):2280-2285.
YU H B, MA C J, QUAN X, et al. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode[J]. Environmental Science & Technology, 2009, 43(6):1935-1939.
ADEWUYI Y G. Sonochemistry in environmental remediation. 1. combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water[J]. Environmental Science & Technology, 2005, 39(10):3409-3420.
WANG J, LI K, YANG C, et al. Ultrasound electrochemical determination of chemical oxygen demand using boron-doped diamond electrode[J]. Electrochemistry Communications, 2012, 18(18):51-54.
BOGDANOWICZ R, CZUPRYNIAK J, GNYBA M, et al. Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond[J]. Sensors and Actuators B:Chemical, 2013, 189:30-36.
LEE S K, SONG M J, LIM D S. Morphology control of 3D-networked boron-doped diamond nanowires and its electrochemical properties[J]. Journal of Electroanalytical Chemistry, 2018, 820:140-145.
BRAGA N A, CAIRO C A A, MATSUSHIMA J T, et al. Diamond/porous titanium three-dimensional hybrid electrodes[J]. Journal of Solid State Electrochemistry, 2010, 14(2):313-321.
HE Y P, HUANG W M, CHEN R L, et al. Improved electrochemical performance of boron-doped diamond electrode depending on the structure of titanium substrate[J]. Journal of Electroanalytical Chemistry, 2015, 758:170-177.
BRAGA N A, BALDAN M R, FERREIRA N G. From micro to nanocrystalline diamond grown on 3D porous titanium matrix[J]. Journal of Materials Science, 2012, 47(1):23-40.
HE Y P, LIN H B, WANG X, et al. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation[J]. Chemical Communications, 2016, 52(51):8026-8029.
TIJANI J O, FATOBA O O, MADZIVIRE G, et al. A review of combined advanced oxidation technologies for the removal of organic pollutants from water[J]. Water Air & Soil Pollution, 2014, 225(9):2102-2132.
GARCIA-SEGURA S, DOSTA S, GUILEMANY J M, et al. Solar photoelectrocatalytic degradation of acid orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray[J]. Applied Catalysis B Environmental, 2013, 132-133(2):142-150.
AKPAN U G, HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:A review[J]. Journal of Hazardous Materials, 2009, 170(2):520-529.
ZANGENEH H, ZINATIZADEH A A L, HABIBI M, et al. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides:A comparative review[J]. Journal of Industrial & Engineering Chemistry, 2015, 26:1-36.
KIM Y C, LEE K H, SASAKI S, et al. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode[J]. Analytical Chemistry, 2000, 72(14):3379-3382.
KIM Y C, SASAKI S, YANO K, et al. Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis[J]. Analytica Chimica Acta, 2001, 432(1):59-66.
CAI Y F, FU X, GAO X L, et al. Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water[J]. Earth and Environmental Science, 2018, 121(2):22-39.
WANG H, ZHONG S H, HE Y, et al. Molecular sieve 4A-TiO2-K2Cr2O7 coexisted system as sensor for chemical oxygen demand[J]. Sensors & Actuators B Chemical, 2011, 160(1):189-195.
JAYAMOHAN H, SMITH Y R, GALE B K, et al. Photocatalytic microfluidic reactors utilizing titania nanotubes on titanium mesh for degradation of organic and biological contaminants[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):657-663.
LALHRIATPUIA C, TIWARI D, TIWARI A, et al. Immobilized nanopillars-TiO2 in the efficient removal of micro-pollutants from aqueous solutions:physico-chemical studies[J]. Chemical Engineering Journal, 2015, 281:782-792.
艾仕云, 李嘉庆, 杨娅, 等. 一种新的光催化氧化体系用于化学需氧量的测定研究[J]. 高等学校化学学报, 2004, 25(5):823-826. AI S Y, LI J Q, YANG Y, et al. Determination of chemical oxygen demand with a new photocatalytic oxidation system[J]. Chemical Research In Chinese Universities, 2004, 25(5):823-826(in Chinese).
AI S Y, LI J Q, YANG Y, et al. Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2-K2Cr2O7 system[J]. Analytica Chimica Acta, 2004, 509(2):237-241.
CHAI Y H, DING H C, ZHANG Z H, et al. Study on photocatalytic oxidation for determination of the low chemical oxygen demand using a nano-TiO2-Ce(SO4)2 coexisted system[J]. Talanta, 2006, 68(3):610-615.
SHEN S H, CHEN J, WANG M, et al. Titanium dioxide nanostructures for photoelectrochemical applications[J]. Progress in Materials Science, 2018, 98:299-385.
BYRNE C, SUBRAMANIAN G, PILLAI S C. Recent advances in photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2018, 6(3):3531-3555.
ZHU L H, CHEN Y E, WU Y H, et al. A surface-fluorinated-TiO2-KMnO4 photocatalytic system for determination of chemical oxygen demand[J]. Analytica Chimica Acta, 2006, 571(2):242-247.
LI S X, ZHENG F Y, CAI S J, et al. A visible light assisted photocatalytic system for determination of chemical oxygen demand using 5-sulfosalicylic acid in situ surface modified titanium dioxide[J]. Sensors & Actuators B Chemical, 2013, 188(11):280-285.
ZHANG Z H, YUAN Y, FANG Y J, et al. Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand[J]. Talanta, 2007, 73(3):523-528.
SILVESTRE C I C, FRIGERIO C, SANTOS J L M, et al. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system[J]. Analytica Chimica Acta, 2011, 699(2):193-197.
ZHAO H J, JIANG D L, ZHANG S Q, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J]. Analytical Chemistry, 2004, 76(1):155-160.
ZHANG A Y, ZHOU M H, ZHOU Q X. A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent[J]. Analytica Chimica Acta, 2011, 686(1):133-143.
ZHANG Z, CHANG X, CHEN A. Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes[J]. Sensors and Actuators B:Chemical, 2016, 223:664-670.
QIU J, ZHANG S, ZHAO H. Nanostructured TiO2 photocatalysts for the determination of organic pollutants[J]. Journal of Hazardous Materials, 2012, 211-212:381-388.
JIANG D, ZHAO H, ZHANG S, et al. Photoelectrochemical measurement of phthalic acid adsorption on porous TiO2 film electrodes[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 156(1):201-206.
ZHANG S, ZHAO H, JIANG D, et al. Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell[J]. Analytica Chimica Acta, 2004, 514(1):89-97.
YUAN S J, MAO R Y, LI Y G, et al. Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determination of chemical oxygen demand[J]. Electrochimica Acta, 2012, 60(1):347-353.
ZHANG J L, ZHOU B X, ZHENG Q, et al. Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array[J]. Water Research, 2009, 43(7):1986-1992.
ZHENG Q, ZHOU B X, BAI J, et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J]. Advanced Materials, 2008, 20(5):1044-1049.
LI X J, YIN W P, LI J Y, et al. TiO2 nanotube sensor for online chemical oxygen demand determination in conjunction with flow injection technique[J]. Water Environment Research, 2014, 86(6):532-539.
WANG C, WU J C, WANG P F, et al. Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand[J]. Analytica Chimica Acta, 2013, 767:141-147.
MU Q H, LI Y G, ZHANG Q H, et al. TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelectrocatalysis[J]. Sensors and Actuators B:Chemical, 2011, 155(2):804-809.
HENG W X, ZHANG W, ZHANG Q H, et al. Photoelectrocatalysis microfluidic reactors utilizing hierarchical TiO2 nanotubes for determination of chemical oxygen demand[J]. Rsc Advances, 2016, 6(55):49824-49830.
LI J Q, ZHENG L, LI L P, et al. Photoelectro-synergistic catalysis at Ti/TiO2/PbO2 electrode and its application on determination of chemical oxygen demand[J]. Electroanalysis, 2010, 18(22):2251-2256.
QU X, TIAN M, CHEN S, et al. Determination of chemical oxygen demand based on novel photoelectro-bifunctional electrodes[J]. Electroanalysis, 2011, 23(5):1267-1275.
MOHAMED A E R, ROHANI S. Modified TiO2 nanotube arrays (TNTAs):Progressive strategies towards visible light responsive photoanode, a review[J]. Energy & Environmental Science, 2011, 4(4):1065-1086.
WANG C, WU J C, WANG P F, et al. Photoelectrocatalytic determination of chemical oxygen demand under visible light using Cu2O-loaded TiO2 nanotube arrays electrode[J]. Sensors & Actuators B Chemical, 2013, 181(3):1-8.
WANG X J, ZHANG S S, WANG H J, et al. Visible light photoelectrochemical properties of a hydrogenated TiO2 nanorod film and its application in the detection of chemical oxygen demand[J]. Rsc Advances, 2015, 5(93):76315-76320.