CuxZn1-xS/RGO复合材料的制备及其光催化降解环丙沙星性能研究

叶少琛, 徐向阳, 何光裕, 陈海群. CuxZn1-xS/RGO复合材料的制备及其光催化降解环丙沙星性能研究[J]. 环境化学, 2020, (7): 1977-1984. doi: 10.7524/j.issn.0254-6108.2019041903
引用本文: 叶少琛, 徐向阳, 何光裕, 陈海群. CuxZn1-xS/RGO复合材料的制备及其光催化降解环丙沙星性能研究[J]. 环境化学, 2020, (7): 1977-1984. doi: 10.7524/j.issn.0254-6108.2019041903
YE Shaochen, XU Xiangyang, HE Guangyu, CHEN Haiqun. Preparation and performance of CuxZn1-xS/RGO composite for photocatalytic degradation of CIP[J]. Environmental Chemistry, 2020, (7): 1977-1984. doi: 10.7524/j.issn.0254-6108.2019041903
Citation: YE Shaochen, XU Xiangyang, HE Guangyu, CHEN Haiqun. Preparation and performance of CuxZn1-xS/RGO composite for photocatalytic degradation of CIP[J]. Environmental Chemistry, 2020, (7): 1977-1984. doi: 10.7524/j.issn.0254-6108.2019041903

CuxZn1-xS/RGO复合材料的制备及其光催化降解环丙沙星性能研究

    通讯作者: 陈海群, E-mail: chenhq@cczu.edu.cn
  • 基金项目:

    国家自然科学基金(51572036,51472035)资助.

Preparation and performance of CuxZn1-xS/RGO composite for photocatalytic degradation of CIP

    Corresponding author: CHEN Haiqun, chenhq@cczu.edu.cn
  • Fund Project: Support by National Natural Science Foundation of China (51572036, 51472035).
  • 摘要: 通过一步水热法制备了光催化剂CuxZn1-xS/RGO,实现了CuxZn1-xS纳米颗粒的可控生长和氧化石墨烯(GO)还原的同步进行,并将所制备的CuxZn1-xS/RGO用于环丙沙星(CIP)的催化降解研究.采用X-射线衍射(XRD)、电感耦合等离子体-原子发射光谱仪(ICP-AES)、傅立叶变换红外光谱(FTIR)、紫外可见漫反射光谱(UV-Vis)、电子显微镜(SEM)和透射电子显微镜(TEM)对复合物的组成形貌进行表征.结果表明,球状的CuxZn1-xS颗粒成功负载在石墨烯表面.Cu2+的掺杂增强了CuxZn1-xS/RGO光催化剂在可见光范围的响应,石墨烯的引入抑制了CuxZn1-xS纳米颗粒的团聚,提高了光催化性能.此外,Cu0.1Zn0.9S/RGO10对CIP的降解速率分别是ZnS、Cu0.1Zn0.9S的8倍和4.4倍.
  • 加载中
  • [1] MONDAL S K, SAHA A K, SINHA A. Removal of ciprofloxacin using modified advanced oxidation processes:Kinetics, pathways and process optimization[J]. Journal of Cleaner Production, 2018, 171:1203-1214.
    [2] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:A review[J]. Water Research, 2013, 47(3):957-995.
    [3] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(58):37-38.
    [4] MURUGANANDHAM M, AMUTHA R, REPO E, et al. Controlled mesoporousself-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye[J]. J PhotochemPhotobio A, 2010, 216(2):133-141.
    [5] ZHANG Y, ZHANG N, TANG Z R, et al. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer[J]. Acs Nano, 2012, 6(11):9777-9789.
    [6] BOXI S S, PARIA S. Effect of silver doping on TiO2, CdS, and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light[J]. Rsc Advances, 2014, 4(71):37752-37760.
    [7] MURUGANANDHAM M, AMUTHA R, REPO E, et al. Controlled mesoporous self-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye[J]. J Photochem Photobio A, 2010, 216(2):133-141.
    [8] ADELIFARD M, ESHGHI H. SYNTHESIS and characterization of nanostructural CuS-ZnS binary compound thin films prepared by spray pyrolysis[J]. Optic Commun 2012, 285(13):4400-4404.
    [9] 苏荣军, 薛雅内, 张广山, 等. Zn0.9Fe0.1S硫化物的制备及其光催化降解双酚A的性能[J]. 环境工程学报, 2017, 11(1):303-311.

    SU H J, XUE Y N, ZHANG G S, et al. Preparation of Zn0.9Fe0.1S sulfide and its photocatalytic degradation of bisphenol A[J]. Journal of Environmental Engineering,2017, 11(1):303-311(in Chinese).

    [10] SUN X, DONG S, WANG E. One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters[J]. Macromolecules, 2004, 37(19):7105-7108.
    [11] BRIGHT K A, WILLIAMS C, KENWARD M A, et al. Antimicrobial action and efficiency of silver-loaded zeolite X[J]. Journal of Applied Microbiology, 2008, 104(5):1516-1524.
    [12] XU W P, ZHANG L C, LI J P, et al. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties[J]. Journal of Materials Chemistry, 2011, 21(12):4593-4597.
    [13] ZHANG Y, CUI W, AN W, et al. Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure[J]. Applied Catalysis B:Environmental, 2018, 221:36-46.
    [14] KUMAR R, SINGH R K, SINGH D P, et al. Laser-assisted synthesis, reduction and micro-patterning of graphene:Recent progress and applications[J]. Coordination Chemistry Reviews, 2017, 342:34-79.
    [15] DONG C, LU J, QIU B, et al. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions[J]. Applied Catalysis B:Environmental, 2018, 222:146-156.
    [16] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯材料在污水处理中的研究进展[J]. 环境化学, 2018, 37(6):1282-1292.

    CAI T W, DING Y, XU L H. Research progress of three-dimensional graphene materials in sewage treatment[J].Environmental Chemistry, 2018, 37(6):1282-1292(in Chinese).

    [17] NI J, XUE J, SHEN J, et al. Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light[J]. Applied Surface Science, 2018, 441:599-606.
    [18] NI J, XUE J, XIE L F, et al. Construction of magnetically separable NiAl LDH/Fe3O4-RGO nanocomposites with enhanced photocatalytic performance under visible light[J]. Physical Chemistry Chemical Physics, 2017, 20(1):414-421.
    [19] LIANG J, WEI Y, ZHANG J, et al. Scalable green method to fabricate magnetically separable NiFe2O4-Reduced Graphene Oxide nanocomposites with enhanced photocatalytic performance driven by visible light[J]. Industrial & Engineering Chemistry Research, 2018, 57:4311-4319.
    [20] ZHU S R, QI Q, ZHAO W N, et al. Enhanced photocatalytic activity in hybrid composite combined BiOBr nanosheets and Bi2S3 nanoparticles[J]. Journal of Physics and Chemistry of Solids, 2018, 121:163-171.
    [21] 李鑫, 余长林, 樊启哲, 等. 溶剂热制备球状ZnS纳米光催化剂及其光催化性能[J]. 有色金属科学与工程, 2012, 3(3):21-26.

    LI X, YU C L, FAN Q Z, et al. Solvothermal preparation of spherical ZnS nano-photocatalyst and its photocatalytic properties[J].Science and Engineering of Non-Ferrous Metals, 2013, 3(3):21-26(in Chinese).

    [22] 余长林, 李鑫, 周晚琴, 等. Al3+掺杂ZnS纳米晶的合成、表征及其光催化性能[J]. 人工晶体学报, 2013, 42(12):2620-2626.

    YU C L, LI X, ZHOU W Q, et al. Synthesis, characterization and photocatalytic activity of Al3+ doped zns nanocrystals[J].Journal of IOL, 2013, 42(12):2620-2626(in Chinese).

    [23] JR W S H, OFFEMAN R E. Preparation of graphitic oxide[J]. J.Am.Chem.Soc, 1958, 80(6):1339.
    [24] GAO W, RAN C, WANG M, et al. The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X=Cl, Br)/rGO composites and the pseudo-secondorder kinetics reaction nature of the Ag/AgBrsystem[J]. Physical Chemistry Chemical Physics, 2016, 18(27):345-356.
    [25] CUI C, WANG Y, LIANG D, et al. Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructurephotocatalyst with enhanced photocatalytic activity and stability under visible light[J]. Applied Catalysis B:Environmental, 2014, 158-159(3):150-160.
    [26] BOXI S S, PARIA S. Effect of silver doping on TiO2, CdS, and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light[J]. Rsc Advances, 2014, 4(71):37752-37760.
    [27] CHEN D, WEI X, HUANG Y. Preparation of ZnS quantum dots and photo-degradation of toxic organic pollutants[J]. Journal of China Three Gorges University, 2010, 32(2):92-102.
    [28] HE B, LIU R, REN J, et al. One-step solvothermal synthesis of petalous carbon-coated Cu+-doped CdS nanocomposites with enhanced photocatalytic hydrogen production[J]. Langmuir, 2017, 33, 6719-6726.
    [29] ZHAO Y, HE G, DAI W, et al. High catalytic activity in the phenol hydroxylation of magnetically separable CuFe2O4-reduced graphene oxide[J]. Industrial & Engineering Chemistry Research, 2014, 53(32):12566-12574.
    [30] QIU Q, CHEN Y, XUE J, et al. One-step solvothermal synthesis of spherical spinel type NiFe2-xMnxO4-RGO as high-performance supercapacitor electrodes[J]. Ceramics International, 2017, 43(2):2226-2232.
    [31] WANG L, CHEN H, XIAO L. CuS/ZnS hexagonal plates with enhanced hydrogen evolution activity under visible light irradiation[J]. Powder Technology, 2016, 288:103-108.
  • 加载中
计量
  • 文章访问数:  1058
  • HTML全文浏览数:  1058
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-19

CuxZn1-xS/RGO复合材料的制备及其光催化降解环丙沙星性能研究

    通讯作者: 陈海群, E-mail: chenhq@cczu.edu.cn
  • 常州大学石油化工学院, 常州市石墨烯环境安全材料重点实验室, 常州, 213164
基金项目:

国家自然科学基金(51572036,51472035)资助.

摘要: 通过一步水热法制备了光催化剂CuxZn1-xS/RGO,实现了CuxZn1-xS纳米颗粒的可控生长和氧化石墨烯(GO)还原的同步进行,并将所制备的CuxZn1-xS/RGO用于环丙沙星(CIP)的催化降解研究.采用X-射线衍射(XRD)、电感耦合等离子体-原子发射光谱仪(ICP-AES)、傅立叶变换红外光谱(FTIR)、紫外可见漫反射光谱(UV-Vis)、电子显微镜(SEM)和透射电子显微镜(TEM)对复合物的组成形貌进行表征.结果表明,球状的CuxZn1-xS颗粒成功负载在石墨烯表面.Cu2+的掺杂增强了CuxZn1-xS/RGO光催化剂在可见光范围的响应,石墨烯的引入抑制了CuxZn1-xS纳米颗粒的团聚,提高了光催化性能.此外,Cu0.1Zn0.9S/RGO10对CIP的降解速率分别是ZnS、Cu0.1Zn0.9S的8倍和4.4倍.

English Abstract

参考文献 (31)

目录

/

返回文章
返回