钝化剂对土壤砷、铅、镉的人体生物有效性的影响研究

宁涵, 王梦雨, 余广彬, 历红波. 钝化剂对土壤砷、铅、镉的人体生物有效性的影响研究[J]. 生态毒理学报, 2021, 16(6): 201-212. doi: 10.7524/AJE.1673-5897.20210308002
引用本文: 宁涵, 王梦雨, 余广彬, 历红波. 钝化剂对土壤砷、铅、镉的人体生物有效性的影响研究[J]. 生态毒理学报, 2021, 16(6): 201-212. doi: 10.7524/AJE.1673-5897.20210308002
Ning Han, Wang Mengyu, Yu Guangbin, Li Hongbo. Effects of Immobilization Materials on Oral Bioavailability of Arsenic, Lead and Cadmium in Contaminated Soils[J]. Asian journal of ecotoxicology, 2021, 16(6): 201-212. doi: 10.7524/AJE.1673-5897.20210308002
Citation: Ning Han, Wang Mengyu, Yu Guangbin, Li Hongbo. Effects of Immobilization Materials on Oral Bioavailability of Arsenic, Lead and Cadmium in Contaminated Soils[J]. Asian journal of ecotoxicology, 2021, 16(6): 201-212. doi: 10.7524/AJE.1673-5897.20210308002

钝化剂对土壤砷、铅、镉的人体生物有效性的影响研究

    作者简介: 宁涵(1996-),女,硕士,研究方向为重金属人体生物有效性,E-mail:1786371327@qq.com
    通讯作者: 历红波, E-mail: hongboli@nju.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(42022058,41877356);国家重点研发计划(2018YFC1801004)

  • 中图分类号: X171.5

Effects of Immobilization Materials on Oral Bioavailability of Arsenic, Lead and Cadmium in Contaminated Soils

    Corresponding author: Li Hongbo, hongboli@nju.edu.cn
  • Fund Project:
  • 摘要: 摄入污染土壤是人体砷、铅和镉暴露的重要途径,向土壤中施加钝化剂可降低重金属的人体生物有效性,进而对土壤重金属污染及其健康危害进行有效防控。然而,评估向土壤中直接施加钝化剂对砷、铅和镉人体生物有效性的调控效果的研究仍缺乏。本研究选取湖南中西部3个矿区土壤,将9种钝化剂以1%比例施入土壤,开展小鼠活体实验,以肝肾为生物终点,测定钝化1个月后土壤中砷、铅和镉的相对生物有效性(relative bioavailability,RBA)。株洲黑土、株洲黄土和水口黄土的pH分别为6.94、6.50和5.70。钝化前,株洲黑土中砷、铅和镉的RBA分别为(37.1±7.54)%、(49.0±4.10)%和(23.1±1.20)%,石灰可将铅RBA降低30.9%;株洲黄土中砷、铅和镉的RBA分别为(41.1±5.49)%、(46.5±11.6)%和(40.7±9.39)%,钙镁磷肥、磷灰石和石灰可将降砷RBA降低25.0%~30.7%;水口黄土中砷、铅和镉的RBA分别为(74.4±3.48)%、(70.4±2.92)%和(81.5±4.98)%,9种钝化剂均可将砷、铅和镉RBA降低11.4%~49.9%、12.0%~44.5%和7.06%~45.0%,其中木制生物炭和石灰效果显著。结果表明,相对于中性土壤,钝化剂在酸性土壤能发挥更好的效果;不同的钝化剂中,石灰的效果最好。本研究结果对原位利用钝化剂来控制土壤重金属人体健康危害具有重要指导意义。
  • 加载中
  • Li Z Y, Ma Z W, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468-469:843-853
    Vodyanitskii Y N. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review)[J]. Eurasian Soil Science, 2013, 46(7):793-801
    Zaccone C, Di Caterina R, Rotunno T, et al. Soil-farming system-food-health:Effect of conventional and organic fertilizers on heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) content in semolina samples[J]. Soil and Tillage Research, 2010, 107(2):97-105
    Hu B F, Jia X L, Hu J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China[J]. International Journal of Environmental Research and Public Health, 2017, 14(9):1042
    Oberoi S, Devleesschauwer B, Gibb H J, et al. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015[J]. Environmental Research, 2019, 171:185-192
    Li H B, Cui X Y, Li K, et al. Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability[J]. Environmental Science & Technology, 2014, 48(15):8548-8555
    Schroder J L, Basta N T, Casteel S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J]. Journal of Environmental Quality, 2004, 33(2):513-521
    Bennett G F. Assessing oral bioavailability of metals in soil:Nark E. Kelley, Susan E. Brauning, Rosalind A. Schoof, Michael V. Ruby, Battelle Press, Columbus, OH, 2002, US$ 65.00, 136 pp., ISBN 1-57477-123-X[J]. Journal of Hazardous Materials, 2002, 95(3):331-332
    Rodriguez R R, Basta N T, Casteel S W, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental Science & Technology, 1999, 33(4):642-649
    Ruby M V, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2):422-430
    Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19):4016-4030
    Weis C P, LaVelle J M. Characteristics to consider when choosing an animal model for the study of lead bioavailability[J]. Chemical Speciation & Bioavailability, 1991, 3(3-4):113-119
    Bradham K D, Diamond G L, Scheckel K G, et al. Mouse assay for determination of arsenic bioavailability in contaminated soils[J]. Journal of Toxicology and Environmental Health, Part A, 2013, 76(13):815-826
    Juhasz A L, Smith E, Weber J, et al. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils[J]. Chemosphere, 2007, 69(6):961-966
    Li J, Li C, Sun H J, et al. Arsenic relative bioavailability in contaminated soils:Comparison of animal models, dosing schemes, and biological end points[J]. Environmental Science & Technology, 2016, 50(1):453-461
    Patterson J K, Lei X G, Miller D D. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption[J]. Experimental Biology and Medicine, 2008, 233(6):651-664
    Scheckel K G, Diamond G L, Burgess M F, et al. Amending soils with phosphate as means to mitigate soil lead hazard:A critical review of the state of the science[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2013, 16(6):337-380
    Li S W, Sun H J, Wang G, et al. Lead relative bioavailability in soils based on different endpoints of a mouse model[J]. Journal of Hazardous Materials, 2017, 326:94-100
    Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94:600-606
    夏志先, 赵九娟, 张金山, 等. 土壤重金属污染现状、危害以及化学修复稳定药剂研究进展[J]. 上海化工, 2017, 42(10):24-29

    Xia Z X, Zhao J J, Zhang J S, et al. Status, harm of heavy metals contaminated soil and progress of stabilizers for chemical remediation[J]. Shanghai Chemical Industry, 2017, 42(10):24-29(in Chinese)

    Komárek M, Vaněk A, Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides:A review[J]. Environmental Pollution, 2013, 172:9-22
    Li X G, He C, Bai Y, et al. Stabilization/solidification on chromium (Ⅲ) wastes by C3A and C3A hydrated matrix[J]. Journal of Hazardous Materials, 2014, 268:61-67
    Thawornchaisit U, Polprasert C. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils[J]. Journal of Hazardous Materials, 2009, 165(1-3):1109-1113
    陈炳睿, 徐超, 吕高明, 等. 6种固化剂对土壤Pb Cd Cu Zn的固化效果[J]. 农业环境科学学报, 2012, 31(7):1330-1336

    Chen B R, Xu C, Lv G M, et al. Effects of six kinds of curing agents on lead, cadmium, copper, zinc stabilization in the tested soil[J]. Journal of Agro-Environment Science, 2012, 31(7):1330-1336(in Chinese)

    Brown S, Chaney R, Hallfrisch J, et al. In situ soil treatments to reduce the phyto-and bioavailability of lead, zinc, and cadmium[J]. Journal of Environmental Quality, 2004, 33(2):522-531
    Theodoratos P, Papassiopi N, Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion[J]. Journal of Hazardous Materials, 2002, 94(2):135-146
    王丹丹, 林静雯, 丁海涛, 等. 牛粪生物炭对重金属镉污染土壤的钝化修复研究[J]. 环境工程, 2016, 34(12):183-187

    Wang D D, Lin J W, Ding H T, et al. Immobilization of cadmium in soils by dairy dung biochar[J]. Environmental Engineering, 2016, 34(12):183-187(in Chinese)

    Guo F Y, Ding C F, Zhou Z G, et al. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification[J]. Ecotoxicology and Environmental Safety, 2018, 161:164-172
    魏明俐, 杜延军, 刘松玉, 等. 磷矿粉稳定铅污染土的溶出特性研究[J]. 岩土工程学报, 2014, 36(4):768-774

    Wei M L, Du Y J, Liu S Y, et al. Leaching characteristics of lead-contaminated clay stabilized by phosphate rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4):768-774(in Chinese)

    Cao X D, Ma L N, Liang Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental Science & Technology, 2011, 45(11):4884-4889
    Wang B L, Xie Z M, Chen J J, et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil[J]. Journal of Environmental Sciences, 2008, 20(9):1109-1117
    Usman A, Kuzyakov Y, Stahr K. Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil (8 pp)[J]. Journal of Soils and Sediments, 2005, 5(4):245-252
    Liu X, Zeng Z, Chen Q, et al. Effects of biochar and lime additives on non-point load of heavy metals in paddy soil[J]. Journal of Hydraulic Engineering, 2014, 45(6):682-690
    Yang J, Mosby D. Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil[J]. Science of the Total Environment, 2006, 366(1):136-142
    李造煌, 杨文弢, 邹佳玲, 等. 钙镁磷肥对土壤Cd生物有效性和糙米Cd含量的影响[J]. 环境科学学报, 2017, 37(6):2322-2330

    Li Z H, Yang W T, Zou J L, et al. Effects of calcium magnesium phosphate fertilizer on Cd bioavailability in soil and Cd contents in rice[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2322-2330(in Chinese)

    徐磊, 周静, 梁家妮, 等. 巨菌草对Cu、Cd污染土壤的修复潜力[J]. 生态学报, 2014, 34(18):5342-5348

    Xu L, Zhou J, Liang J N, et al. The remediation potential of Pennisetum sp. on Cu, Cd contaminated soil[J]. Acta Ecologica Sinica, 2014, 34(18):5342-5348(in Chinese)

    刘玲, 刘海卿, 张颖, 等. 石灰和粉煤灰固化修复六价铬污染土试验研究[J]. 硅酸盐通报, 2015, 34(11):3361-3365

    Liu L, Liu H Q, Zhang Y, et al. Experimental study of lime and fly ash for solidification remediation of hexavalent chromium contaminated soil[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(11):3361-3365(in Chinese)

    邹雪艳, 李小红, 赵彦保, 等. 化学钝化法修复重金属污染土壤研究进展[J]. 化学研究, 2018, 29(6):560-569

    Zou X Y, Li X H, Zhao Y B, et al. Research progress for chemical immobilization in heavy metal contaminated soils[J]. Chemical Research, 2018, 29(6):560-569(in Chinese)

    Sen Gupta S, Bhattacharyya K G. Adsorption of heavy metals on kaolinite and montmorillonite:A review[J]. Physical Chemistry Chemical Physics, 2012, 14(19):6698-6723
    龚璇, 刘红, 范先媛, 等. 凹凸棒土负载纳米铁/镍去除水中Zn(Ⅱ)的性能与机理研究[J]. 黑龙江大学自然科学学报, 2018, 35(2):200-205

    Gong X, Liu H, Fan X Y, et al. Performance and mechanism of Zn(Ⅱ) removal by attapulgite-supported nano Fe/Ni from aqueous solution[J]. Journal of Natural Science of Heilongjiang University, 2018, 35(2):200-205(in Chinese)

    Huang G Q, Song Y H, Liu C, et al. Acid activated montmorillonite for gas-phase catalytic dehydration of monoethanolamine[J]. Applied Clay Science, 2019, 168:116-124
    Biederman L A, Harpole W S. Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis[J]. GCB Bioenergy, 2013, 5(2):202-214
    宋波, 曾炜铨, 陆素芬, 等. 含磷材料在铅污染土壤修复中的应用[J]. 环境工程学报, 2015, 9(12):5649-5658

    Song B, Zeng W Q, Lu S F, et al. Application of phosphorus materials in remediation of lead-contaminated soil[J]. Chinese Journal of Environmental Engineering, 2015, 9(12):5649-5658(in Chinese)

    Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6):2282-2287
    Cheyns K, Peeters S, Delcourt D, et al. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency[J]. Environmental Pollution, 2012, 164:242-247
    王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20(5):1214-1222

    Wang L Q, Luo L, Ma Y B, et al. In situ immobilization remediation of heavy metals-contaminated soils:A review[J]. Chinese Journal of Applied Ecology, 2009, 20(5):1214-1222(in Chinese)

    韩雷, 陈娟, 杜平, 等. 不同钝化剂对Cd污染农田土壤生态安全的影响[J]. 环境科学研究, 2018, 31(7):1289-1295

    Han L, Chen J, Du P, et al. Assessing the ecological security of the cadmium contaminated farmland treated with different amendments[J]. Research of Environmental Sciences, 2018, 31(7):1289-1295(in Chinese)

    Bradham K D, Scheckel K G, Nelson C M, et al. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils[J]. Environmental Health Perspectives, 2011, 119(11):1629-1634
    Bradham K D, Nelson C, Juhasz A L, et al. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils[J]. Environmental Science & Technology, 2015, 49(10):6312-6318
    Whitacre S, Basta N, Stevens B, et al. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils[J]. Chemosphere, 2017, 180:545-552
    Wang S L, Mulligan C N. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid[J]. Chemosphere, 2009, 74(2):274-279
    陈同斌. 土壤溶液中的砷及其与水稻生长效应的关系[J]. 生态学报, 1996, 16(2):148-153

    Chen T B. Arsenic in soil solution and its effect on the growth of rice (Oryza sativa L.)[J]. Acta Ecologica Sinica, 1996, 16(2):148-153(in Chinese)

    Madeira A C, de Varennes A, Abreu M M, et al. Tomato and parsley growth, arsenic uptake and translocation in a contaminated amended soil[J]. Journal of Geochemical Exploration, 2012, 123:114-121
    Montero J I Z, Monteiro A S C, Gontijo E S J, et al. High efficiency removal of As(Ⅲ) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biochars[J]. Ecotoxicology and Environmental Safety, 2018, 162:616-624
    Hussain F, Hussain I, Khan A H A, et al. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil[J]. Environmental and Experimental Botany, 2018, 153:80-88
    郝金才, 李柱, 吴龙华, 等. 铅镉高污染土壤的钝化材料筛选及其修复效果初探[J]. 土壤, 2019, 51(4):752-759

    Hao J C, Li Z, Wu L H, et al. Preliminary study on cadmium and lead stabilization in soil highly polluted with heavy metals using different stabilizing agents[J]. Soils, 2019, 51(4):752-759(in Chinese)

    陈远其, 张煜, 陈国梁. 石灰对土壤重金属污染修复研究进展[J]. 生态环境学报, 2016, 25(8):1419-1424

    Chen Y Q, Zhang Y, Chen G L. Remediation of heavy metal contaminated soils by lime:A review[J]. Ecology and Environmental Sciences, 2016, 25(8):1419-1424(in Chinese)

    杨秀敏, 任广萌, 李立新, 等. 土壤pH值对重金属形态的影响及其相关性研究[J]. 中国矿业, 2017, 26(6):79-83

    Yang X M, Ren G M, Li L X, et al. Effect of pH value on heavy metals form of soil and their relationship[J]. China Mining Magazine, 2017, 26(6):79-83(in Chinese)

    Wang J J, Zeng X B, Zhang H, et al. Effect of exogenous phosphate on the lability and phytoavailability of arsenic in soils[J]. Chemosphere, 2018, 196:540-547
    Lee S H, Kim E Y, Park H, et al. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products[J]. Geoderma, 2011, 161(1-2):1-7
    黄黎粤, 丁竹红, 胡忻, 等. 生物炭施用对小麦和玉米幼苗根际和非根际土壤中Pb、As和Cd生物有效性的影响研究[J]. 农业环境科学学报, 2019, 38(2):348-355

    Huang L Y, Ding Z H, Hu X, et al. Effects of biochars on bioavailability of Pb, As, and Cd in the rhizosphere and non-rhizosphere soil of corn and wheat seedlings[J]. Journal of Agro-Environment Science, 2019, 38(2):348-355(in Chinese)

    Abd El-Azeem S A M, Ahmad M, Usman A R A, et al. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials[J]. Environmental Earth Sciences, 2013, 70(7):3411-3420
    Woldetsadik D, Drechsel P, Keraita B, et al. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils[J]. SpringerPlus, 2016, 5:397
    Tan W N, Li Z A, Qiu J, et al. Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in South China[J]. Pedosphere, 2011, 21(2):223-229
  • 加载中
计量
  • 文章访问数:  2910
  • HTML全文浏览数:  2910
  • PDF下载数:  44
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-08
宁涵, 王梦雨, 余广彬, 历红波. 钝化剂对土壤砷、铅、镉的人体生物有效性的影响研究[J]. 生态毒理学报, 2021, 16(6): 201-212. doi: 10.7524/AJE.1673-5897.20210308002
引用本文: 宁涵, 王梦雨, 余广彬, 历红波. 钝化剂对土壤砷、铅、镉的人体生物有效性的影响研究[J]. 生态毒理学报, 2021, 16(6): 201-212. doi: 10.7524/AJE.1673-5897.20210308002
Ning Han, Wang Mengyu, Yu Guangbin, Li Hongbo. Effects of Immobilization Materials on Oral Bioavailability of Arsenic, Lead and Cadmium in Contaminated Soils[J]. Asian journal of ecotoxicology, 2021, 16(6): 201-212. doi: 10.7524/AJE.1673-5897.20210308002
Citation: Ning Han, Wang Mengyu, Yu Guangbin, Li Hongbo. Effects of Immobilization Materials on Oral Bioavailability of Arsenic, Lead and Cadmium in Contaminated Soils[J]. Asian journal of ecotoxicology, 2021, 16(6): 201-212. doi: 10.7524/AJE.1673-5897.20210308002

钝化剂对土壤砷、铅、镉的人体生物有效性的影响研究

    通讯作者: 历红波, E-mail: hongboli@nju.edu.cn
    作者简介: 宁涵(1996-),女,硕士,研究方向为重金属人体生物有效性,E-mail:1786371327@qq.com
  • 1. 南京大学环境学院, 南京 210023;
  • 2. 临沂市生态环境监控中心, 临沂 276000
基金项目:

国家自然科学基金资助项目(42022058,41877356);国家重点研发计划(2018YFC1801004)

摘要: 摄入污染土壤是人体砷、铅和镉暴露的重要途径,向土壤中施加钝化剂可降低重金属的人体生物有效性,进而对土壤重金属污染及其健康危害进行有效防控。然而,评估向土壤中直接施加钝化剂对砷、铅和镉人体生物有效性的调控效果的研究仍缺乏。本研究选取湖南中西部3个矿区土壤,将9种钝化剂以1%比例施入土壤,开展小鼠活体实验,以肝肾为生物终点,测定钝化1个月后土壤中砷、铅和镉的相对生物有效性(relative bioavailability,RBA)。株洲黑土、株洲黄土和水口黄土的pH分别为6.94、6.50和5.70。钝化前,株洲黑土中砷、铅和镉的RBA分别为(37.1±7.54)%、(49.0±4.10)%和(23.1±1.20)%,石灰可将铅RBA降低30.9%;株洲黄土中砷、铅和镉的RBA分别为(41.1±5.49)%、(46.5±11.6)%和(40.7±9.39)%,钙镁磷肥、磷灰石和石灰可将降砷RBA降低25.0%~30.7%;水口黄土中砷、铅和镉的RBA分别为(74.4±3.48)%、(70.4±2.92)%和(81.5±4.98)%,9种钝化剂均可将砷、铅和镉RBA降低11.4%~49.9%、12.0%~44.5%和7.06%~45.0%,其中木制生物炭和石灰效果显著。结果表明,相对于中性土壤,钝化剂在酸性土壤能发挥更好的效果;不同的钝化剂中,石灰的效果最好。本研究结果对原位利用钝化剂来控制土壤重金属人体健康危害具有重要指导意义。

English Abstract

参考文献 (64)

返回顶部

目录

/

返回文章
返回