Li Z Y, Ma Z W, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468-469:843-853
|
Vodyanitskii Y N. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review)[J]. Eurasian Soil Science, 2013, 46(7):793-801
|
Zaccone C, Di Caterina R, Rotunno T, et al. Soil-farming system-food-health:Effect of conventional and organic fertilizers on heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) content in semolina samples[J]. Soil and Tillage Research, 2010, 107(2):97-105
|
Hu B F, Jia X L, Hu J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China[J]. International Journal of Environmental Research and Public Health, 2017, 14(9):1042
|
Oberoi S, Devleesschauwer B, Gibb H J, et al. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015[J]. Environmental Research, 2019, 171:185-192
|
Li H B, Cui X Y, Li K, et al. Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability[J]. Environmental Science & Technology, 2014, 48(15):8548-8555
|
Schroder J L, Basta N T, Casteel S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J]. Journal of Environmental Quality, 2004, 33(2):513-521
|
Bennett G F. Assessing oral bioavailability of metals in soil:Nark E. Kelley, Susan E. Brauning, Rosalind A. Schoof, Michael V. Ruby, Battelle Press, Columbus, OH, 2002, US$ 65.00, 136 pp., ISBN 1-57477-123-X[J]. Journal of Hazardous Materials, 2002, 95(3):331-332
|
Rodriguez R R, Basta N T, Casteel S W, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental Science & Technology, 1999, 33(4):642-649
|
Ruby M V, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2):422-430
|
Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19):4016-4030
|
Weis C P, LaVelle J M. Characteristics to consider when choosing an animal model for the study of lead bioavailability[J]. Chemical Speciation & Bioavailability, 1991, 3(3-4):113-119
|
Bradham K D, Diamond G L, Scheckel K G, et al. Mouse assay for determination of arsenic bioavailability in contaminated soils[J]. Journal of Toxicology and Environmental Health, Part A, 2013, 76(13):815-826
|
Juhasz A L, Smith E, Weber J, et al. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils[J]. Chemosphere, 2007, 69(6):961-966
|
Li J, Li C, Sun H J, et al. Arsenic relative bioavailability in contaminated soils:Comparison of animal models, dosing schemes, and biological end points[J]. Environmental Science & Technology, 2016, 50(1):453-461
|
Patterson J K, Lei X G, Miller D D. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption[J]. Experimental Biology and Medicine, 2008, 233(6):651-664
|
Scheckel K G, Diamond G L, Burgess M F, et al. Amending soils with phosphate as means to mitigate soil lead hazard:A critical review of the state of the science[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2013, 16(6):337-380
|
Li S W, Sun H J, Wang G, et al. Lead relative bioavailability in soils based on different endpoints of a mouse model[J]. Journal of Hazardous Materials, 2017, 326:94-100
|
Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94:600-606
|
夏志先, 赵九娟, 张金山, 等. 土壤重金属污染现状、危害以及化学修复稳定药剂研究进展[J]. 上海化工, 2017, 42(10):24-29
Xia Z X, Zhao J J, Zhang J S, et al. Status, harm of heavy metals contaminated soil and progress of stabilizers for chemical remediation[J]. Shanghai Chemical Industry, 2017, 42(10):24-29(in Chinese)
|
Komárek M, Vaněk A, Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides:A review[J]. Environmental Pollution, 2013, 172:9-22
|
Li X G, He C, Bai Y, et al. Stabilization/solidification on chromium (Ⅲ) wastes by C3A and C3A hydrated matrix[J]. Journal of Hazardous Materials, 2014, 268:61-67
|
Thawornchaisit U, Polprasert C. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils[J]. Journal of Hazardous Materials, 2009, 165(1-3):1109-1113
|
陈炳睿, 徐超, 吕高明, 等. 6种固化剂对土壤Pb Cd Cu Zn的固化效果[J]. 农业环境科学学报, 2012, 31(7):1330-1336
Chen B R, Xu C, Lv G M, et al. Effects of six kinds of curing agents on lead, cadmium, copper, zinc stabilization in the tested soil[J]. Journal of Agro-Environment Science, 2012, 31(7):1330-1336(in Chinese)
|
Brown S, Chaney R, Hallfrisch J, et al. In situ soil treatments to reduce the phyto-and bioavailability of lead, zinc, and cadmium[J]. Journal of Environmental Quality, 2004, 33(2):522-531
|
Theodoratos P, Papassiopi N, Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion[J]. Journal of Hazardous Materials, 2002, 94(2):135-146
|
王丹丹, 林静雯, 丁海涛, 等. 牛粪生物炭对重金属镉污染土壤的钝化修复研究[J]. 环境工程, 2016, 34(12):183-187
Wang D D, Lin J W, Ding H T, et al. Immobilization of cadmium in soils by dairy dung biochar[J]. Environmental Engineering, 2016, 34(12):183-187(in Chinese)
|
Guo F Y, Ding C F, Zhou Z G, et al. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification[J]. Ecotoxicology and Environmental Safety, 2018, 161:164-172
|
魏明俐, 杜延军, 刘松玉, 等. 磷矿粉稳定铅污染土的溶出特性研究[J]. 岩土工程学报, 2014, 36(4):768-774
Wei M L, Du Y J, Liu S Y, et al. Leaching characteristics of lead-contaminated clay stabilized by phosphate rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4):768-774(in Chinese)
|
Cao X D, Ma L N, Liang Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental Science & Technology, 2011, 45(11):4884-4889
|
Wang B L, Xie Z M, Chen J J, et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil[J]. Journal of Environmental Sciences, 2008, 20(9):1109-1117
|
Usman A, Kuzyakov Y, Stahr K. Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil (8 pp)[J]. Journal of Soils and Sediments, 2005, 5(4):245-252
|
Liu X, Zeng Z, Chen Q, et al. Effects of biochar and lime additives on non-point load of heavy metals in paddy soil[J]. Journal of Hydraulic Engineering, 2014, 45(6):682-690
|
Yang J, Mosby D. Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil[J]. Science of the Total Environment, 2006, 366(1):136-142
|
李造煌, 杨文弢, 邹佳玲, 等. 钙镁磷肥对土壤Cd生物有效性和糙米Cd含量的影响[J]. 环境科学学报, 2017, 37(6):2322-2330
Li Z H, Yang W T, Zou J L, et al. Effects of calcium magnesium phosphate fertilizer on Cd bioavailability in soil and Cd contents in rice[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2322-2330(in Chinese)
|
徐磊, 周静, 梁家妮, 等. 巨菌草对Cu、Cd污染土壤的修复潜力[J]. 生态学报, 2014, 34(18):5342-5348
Xu L, Zhou J, Liang J N, et al. The remediation potential of Pennisetum sp. on Cu, Cd contaminated soil[J]. Acta Ecologica Sinica, 2014, 34(18):5342-5348(in Chinese)
|
刘玲, 刘海卿, 张颖, 等. 石灰和粉煤灰固化修复六价铬污染土试验研究[J]. 硅酸盐通报, 2015, 34(11):3361-3365
Liu L, Liu H Q, Zhang Y, et al. Experimental study of lime and fly ash for solidification remediation of hexavalent chromium contaminated soil[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(11):3361-3365(in Chinese)
|
邹雪艳, 李小红, 赵彦保, 等. 化学钝化法修复重金属污染土壤研究进展[J]. 化学研究, 2018, 29(6):560-569
Zou X Y, Li X H, Zhao Y B, et al. Research progress for chemical immobilization in heavy metal contaminated soils[J]. Chemical Research, 2018, 29(6):560-569(in Chinese)
|
Sen Gupta S, Bhattacharyya K G. Adsorption of heavy metals on kaolinite and montmorillonite:A review[J]. Physical Chemistry Chemical Physics, 2012, 14(19):6698-6723
|
龚璇, 刘红, 范先媛, 等. 凹凸棒土负载纳米铁/镍去除水中Zn(Ⅱ)的性能与机理研究[J]. 黑龙江大学自然科学学报, 2018, 35(2):200-205
Gong X, Liu H, Fan X Y, et al. Performance and mechanism of Zn(Ⅱ) removal by attapulgite-supported nano Fe/Ni from aqueous solution[J]. Journal of Natural Science of Heilongjiang University, 2018, 35(2):200-205(in Chinese)
|
Huang G Q, Song Y H, Liu C, et al. Acid activated montmorillonite for gas-phase catalytic dehydration of monoethanolamine[J]. Applied Clay Science, 2019, 168:116-124
|
Biederman L A, Harpole W S. Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis[J]. GCB Bioenergy, 2013, 5(2):202-214
|
宋波, 曾炜铨, 陆素芬, 等. 含磷材料在铅污染土壤修复中的应用[J]. 环境工程学报, 2015, 9(12):5649-5658
Song B, Zeng W Q, Lu S F, et al. Application of phosphorus materials in remediation of lead-contaminated soil[J]. Chinese Journal of Environmental Engineering, 2015, 9(12):5649-5658(in Chinese)
|
Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6):2282-2287
|
Cheyns K, Peeters S, Delcourt D, et al. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency[J]. Environmental Pollution, 2012, 164:242-247
|
王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20(5):1214-1222
Wang L Q, Luo L, Ma Y B, et al. In situ immobilization remediation of heavy metals-contaminated soils:A review[J]. Chinese Journal of Applied Ecology, 2009, 20(5):1214-1222(in Chinese)
|
韩雷, 陈娟, 杜平, 等. 不同钝化剂对Cd污染农田土壤生态安全的影响[J]. 环境科学研究, 2018, 31(7):1289-1295
Han L, Chen J, Du P, et al. Assessing the ecological security of the cadmium contaminated farmland treated with different amendments[J]. Research of Environmental Sciences, 2018, 31(7):1289-1295(in Chinese)
|
Bradham K D, Scheckel K G, Nelson C M, et al. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils[J]. Environmental Health Perspectives, 2011, 119(11):1629-1634
|
Bradham K D, Nelson C, Juhasz A L, et al. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils[J]. Environmental Science & Technology, 2015, 49(10):6312-6318
|
Whitacre S, Basta N, Stevens B, et al. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils[J]. Chemosphere, 2017, 180:545-552
|
Wang S L, Mulligan C N. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid[J]. Chemosphere, 2009, 74(2):274-279
|
陈同斌. 土壤溶液中的砷及其与水稻生长效应的关系[J]. 生态学报, 1996, 16(2):148-153
Chen T B. Arsenic in soil solution and its effect on the growth of rice (Oryza sativa L.)[J]. Acta Ecologica Sinica, 1996, 16(2):148-153(in Chinese)
|
Madeira A C, de Varennes A, Abreu M M, et al. Tomato and parsley growth, arsenic uptake and translocation in a contaminated amended soil[J]. Journal of Geochemical Exploration, 2012, 123:114-121
|
Montero J I Z, Monteiro A S C, Gontijo E S J, et al. High efficiency removal of As(Ⅲ) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biochars[J]. Ecotoxicology and Environmental Safety, 2018, 162:616-624
|
Hussain F, Hussain I, Khan A H A, et al. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil[J]. Environmental and Experimental Botany, 2018, 153:80-88
|
郝金才, 李柱, 吴龙华, 等. 铅镉高污染土壤的钝化材料筛选及其修复效果初探[J]. 土壤, 2019, 51(4):752-759
Hao J C, Li Z, Wu L H, et al. Preliminary study on cadmium and lead stabilization in soil highly polluted with heavy metals using different stabilizing agents[J]. Soils, 2019, 51(4):752-759(in Chinese)
|
陈远其, 张煜, 陈国梁. 石灰对土壤重金属污染修复研究进展[J]. 生态环境学报, 2016, 25(8):1419-1424
Chen Y Q, Zhang Y, Chen G L. Remediation of heavy metal contaminated soils by lime:A review[J]. Ecology and Environmental Sciences, 2016, 25(8):1419-1424(in Chinese)
|
杨秀敏, 任广萌, 李立新, 等. 土壤pH值对重金属形态的影响及其相关性研究[J]. 中国矿业, 2017, 26(6):79-83
Yang X M, Ren G M, Li L X, et al. Effect of pH value on heavy metals form of soil and their relationship[J]. China Mining Magazine, 2017, 26(6):79-83(in Chinese)
|
Wang J J, Zeng X B, Zhang H, et al. Effect of exogenous phosphate on the lability and phytoavailability of arsenic in soils[J]. Chemosphere, 2018, 196:540-547
|
Lee S H, Kim E Y, Park H, et al. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products[J]. Geoderma, 2011, 161(1-2):1-7
|
黄黎粤, 丁竹红, 胡忻, 等. 生物炭施用对小麦和玉米幼苗根际和非根际土壤中Pb、As和Cd生物有效性的影响研究[J]. 农业环境科学学报, 2019, 38(2):348-355
Huang L Y, Ding Z H, Hu X, et al. Effects of biochars on bioavailability of Pb, As, and Cd in the rhizosphere and non-rhizosphere soil of corn and wheat seedlings[J]. Journal of Agro-Environment Science, 2019, 38(2):348-355(in Chinese)
|
Abd El-Azeem S A M, Ahmad M, Usman A R A, et al. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials[J]. Environmental Earth Sciences, 2013, 70(7):3411-3420
|
Woldetsadik D, Drechsel P, Keraita B, et al. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils[J]. SpringerPlus, 2016, 5:397
|
Tan W N, Li Z A, Qiu J, et al. Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in South China[J]. Pedosphere, 2011, 21(2):223-229
|