Li Z Y, Ma Z W, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468-469:843-853
Vodyanitskii Y N. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review)[J]. Eurasian Soil Science, 2013, 46(7):793-801
Zaccone C, Di Caterina R, Rotunno T, et al. Soil-farming system-food-health:Effect of conventional and organic fertilizers on heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) content in semolina samples[J]. Soil and Tillage Research, 2010, 107(2):97-105
Hu B F, Jia X L, Hu J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China[J]. International Journal of Environmental Research and Public Health, 2017, 14(9):1042
Oberoi S, Devleesschauwer B, Gibb H J, et al. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015[J]. Environmental Research, 2019, 171:185-192
Li H B, Cui X Y, Li K, et al. Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability[J]. Environmental Science & Technology, 2014, 48(15):8548-8555
Schroder J L, Basta N T, Casteel S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J]. Journal of Environmental Quality, 2004, 33(2):513-521
Bennett G F. Assessing oral bioavailability of metals in soil:Nark E. Kelley, Susan E. Brauning, Rosalind A. Schoof, Michael V. Ruby, Battelle Press, Columbus, OH, 2002, US$ 65.00, 136 pp., ISBN 1-57477-123-X[J]. Journal of Hazardous Materials, 2002, 95(3):331-332
Rodriguez R R, Basta N T, Casteel S W, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental Science & Technology, 1999, 33(4):642-649
Ruby M V, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2):422-430
Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19):4016-4030
Weis C P, LaVelle J M. Characteristics to consider when choosing an animal model for the study of lead bioavailability[J]. Chemical Speciation & Bioavailability, 1991, 3(3-4):113-119
Bradham K D, Diamond G L, Scheckel K G, et al. Mouse assay for determination of arsenic bioavailability in contaminated soils[J]. Journal of Toxicology and Environmental Health, Part A, 2013, 76(13):815-826
Juhasz A L, Smith E, Weber J, et al. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils[J]. Chemosphere, 2007, 69(6):961-966
Li J, Li C, Sun H J, et al. Arsenic relative bioavailability in contaminated soils:Comparison of animal models, dosing schemes, and biological end points[J]. Environmental Science & Technology, 2016, 50(1):453-461
Patterson J K, Lei X G, Miller D D. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption[J]. Experimental Biology and Medicine, 2008, 233(6):651-664
Scheckel K G, Diamond G L, Burgess M F, et al. Amending soils with phosphate as means to mitigate soil lead hazard:A critical review of the state of the science[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2013, 16(6):337-380
Li S W, Sun H J, Wang G, et al. Lead relative bioavailability in soils based on different endpoints of a mouse model[J]. Journal of Hazardous Materials, 2017, 326:94-100
Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94:600-606
夏志先, 赵九娟, 张金山, 等. 土壤重金属污染现状、危害以及化学修复稳定药剂研究进展[J]. 上海化工, 2017, 42(10):24-29 Xia Z X, Zhao J J, Zhang J S, et al. Status, harm of heavy metals contaminated soil and progress of stabilizers for chemical remediation[J]. Shanghai Chemical Industry, 2017, 42(10):24-29(in Chinese)
Komárek M, Vaněk A, Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides:A review[J]. Environmental Pollution, 2013, 172:9-22
Li X G, He C, Bai Y, et al. Stabilization/solidification on chromium (Ⅲ) wastes by C3A and C3A hydrated matrix[J]. Journal of Hazardous Materials, 2014, 268:61-67
Thawornchaisit U, Polprasert C. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils[J]. Journal of Hazardous Materials, 2009, 165(1-3):1109-1113
陈炳睿, 徐超, 吕高明, 等. 6种固化剂对土壤Pb Cd Cu Zn的固化效果[J]. 农业环境科学学报, 2012, 31(7):1330-1336 Chen B R, Xu C, Lv G M, et al. Effects of six kinds of curing agents on lead, cadmium, copper, zinc stabilization in the tested soil[J]. Journal of Agro-Environment Science, 2012, 31(7):1330-1336(in Chinese)
Brown S, Chaney R, Hallfrisch J, et al. In situ soil treatments to reduce the phyto-and bioavailability of lead, zinc, and cadmium[J]. Journal of Environmental Quality, 2004, 33(2):522-531
Theodoratos P, Papassiopi N, Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion[J]. Journal of Hazardous Materials, 2002, 94(2):135-146
王丹丹, 林静雯, 丁海涛, 等. 牛粪生物炭对重金属镉污染土壤的钝化修复研究[J]. 环境工程, 2016, 34(12):183-187 Wang D D, Lin J W, Ding H T, et al. Immobilization of cadmium in soils by dairy dung biochar[J]. Environmental Engineering, 2016, 34(12):183-187(in Chinese)
Guo F Y, Ding C F, Zhou Z G, et al. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification[J]. Ecotoxicology and Environmental Safety, 2018, 161:164-172
魏明俐, 杜延军, 刘松玉, 等. 磷矿粉稳定铅污染土的溶出特性研究[J]. 岩土工程学报, 2014, 36(4):768-774 Wei M L, Du Y J, Liu S Y, et al. Leaching characteristics of lead-contaminated clay stabilized by phosphate rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4):768-774(in Chinese)
Cao X D, Ma L N, Liang Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental Science & Technology, 2011, 45(11):4884-4889
Wang B L, Xie Z M, Chen J J, et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil[J]. Journal of Environmental Sciences, 2008, 20(9):1109-1117
Usman A, Kuzyakov Y, Stahr K. Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil (8 pp)[J]. Journal of Soils and Sediments, 2005, 5(4):245-252
Liu X, Zeng Z, Chen Q, et al. Effects of biochar and lime additives on non-point load of heavy metals in paddy soil[J]. Journal of Hydraulic Engineering, 2014, 45(6):682-690
Yang J, Mosby D. Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil[J]. Science of the Total Environment, 2006, 366(1):136-142
李造煌, 杨文弢, 邹佳玲, 等. 钙镁磷肥对土壤Cd生物有效性和糙米Cd含量的影响[J]. 环境科学学报, 2017, 37(6):2322-2330 Li Z H, Yang W T, Zou J L, et al. Effects of calcium magnesium phosphate fertilizer on Cd bioavailability in soil and Cd contents in rice[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2322-2330(in Chinese)
徐磊, 周静, 梁家妮, 等. 巨菌草对Cu、Cd污染土壤的修复潜力[J]. 生态学报, 2014, 34(18):5342-5348 Xu L, Zhou J, Liang J N, et al. The remediation potential of Pennisetum sp. on Cu, Cd contaminated soil[J]. Acta Ecologica Sinica, 2014, 34(18):5342-5348(in Chinese)
刘玲, 刘海卿, 张颖, 等. 石灰和粉煤灰固化修复六价铬污染土试验研究[J]. 硅酸盐通报, 2015, 34(11):3361-3365 Liu L, Liu H Q, Zhang Y, et al. Experimental study of lime and fly ash for solidification remediation of hexavalent chromium contaminated soil[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(11):3361-3365(in Chinese)
邹雪艳, 李小红, 赵彦保, 等. 化学钝化法修复重金属污染土壤研究进展[J]. 化学研究, 2018, 29(6):560-569 Zou X Y, Li X H, Zhao Y B, et al. Research progress for chemical immobilization in heavy metal contaminated soils[J]. Chemical Research, 2018, 29(6):560-569(in Chinese)
Sen Gupta S, Bhattacharyya K G. Adsorption of heavy metals on kaolinite and montmorillonite:A review[J]. Physical Chemistry Chemical Physics, 2012, 14(19):6698-6723
龚璇, 刘红, 范先媛, 等. 凹凸棒土负载纳米铁/镍去除水中Zn(Ⅱ)的性能与机理研究[J]. 黑龙江大学自然科学学报, 2018, 35(2):200-205 Gong X, Liu H, Fan X Y, et al. Performance and mechanism of Zn(Ⅱ) removal by attapulgite-supported nano Fe/Ni from aqueous solution[J]. Journal of Natural Science of Heilongjiang University, 2018, 35(2):200-205(in Chinese)
Huang G Q, Song Y H, Liu C, et al. Acid activated montmorillonite for gas-phase catalytic dehydration of monoethanolamine[J]. Applied Clay Science, 2019, 168:116-124
Biederman L A, Harpole W S. Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis[J]. GCB Bioenergy, 2013, 5(2):202-214
宋波, 曾炜铨, 陆素芬, 等. 含磷材料在铅污染土壤修复中的应用[J]. 环境工程学报, 2015, 9(12):5649-5658 Song B, Zeng W Q, Lu S F, et al. Application of phosphorus materials in remediation of lead-contaminated soil[J]. Chinese Journal of Environmental Engineering, 2015, 9(12):5649-5658(in Chinese)
Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6):2282-2287
Cheyns K, Peeters S, Delcourt D, et al. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency[J]. Environmental Pollution, 2012, 164:242-247
王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20(5):1214-1222 Wang L Q, Luo L, Ma Y B, et al. In situ immobilization remediation of heavy metals-contaminated soils:A review[J]. Chinese Journal of Applied Ecology, 2009, 20(5):1214-1222(in Chinese)
韩雷, 陈娟, 杜平, 等. 不同钝化剂对Cd污染农田土壤生态安全的影响[J]. 环境科学研究, 2018, 31(7):1289-1295 Han L, Chen J, Du P, et al. Assessing the ecological security of the cadmium contaminated farmland treated with different amendments[J]. Research of Environmental Sciences, 2018, 31(7):1289-1295(in Chinese)
Bradham K D, Scheckel K G, Nelson C M, et al. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils[J]. Environmental Health Perspectives, 2011, 119(11):1629-1634
Bradham K D, Nelson C, Juhasz A L, et al. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils[J]. Environmental Science & Technology, 2015, 49(10):6312-6318
Whitacre S, Basta N, Stevens B, et al. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils[J]. Chemosphere, 2017, 180:545-552
Wang S L, Mulligan C N. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid[J]. Chemosphere, 2009, 74(2):274-279
陈同斌. 土壤溶液中的砷及其与水稻生长效应的关系[J]. 生态学报, 1996, 16(2):148-153 Chen T B. Arsenic in soil solution and its effect on the growth of rice (Oryza sativa L.)[J]. Acta Ecologica Sinica, 1996, 16(2):148-153(in Chinese)
Madeira A C, de Varennes A, Abreu M M, et al. Tomato and parsley growth, arsenic uptake and translocation in a contaminated amended soil[J]. Journal of Geochemical Exploration, 2012, 123:114-121
Montero J I Z, Monteiro A S C, Gontijo E S J, et al. High efficiency removal of As(Ⅲ) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biochars[J]. Ecotoxicology and Environmental Safety, 2018, 162:616-624
Hussain F, Hussain I, Khan A H A, et al. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil[J]. Environmental and Experimental Botany, 2018, 153:80-88
郝金才, 李柱, 吴龙华, 等. 铅镉高污染土壤的钝化材料筛选及其修复效果初探[J]. 土壤, 2019, 51(4):752-759 Hao J C, Li Z, Wu L H, et al. Preliminary study on cadmium and lead stabilization in soil highly polluted with heavy metals using different stabilizing agents[J]. Soils, 2019, 51(4):752-759(in Chinese)
陈远其, 张煜, 陈国梁. 石灰对土壤重金属污染修复研究进展[J]. 生态环境学报, 2016, 25(8):1419-1424 Chen Y Q, Zhang Y, Chen G L. Remediation of heavy metal contaminated soils by lime:A review[J]. Ecology and Environmental Sciences, 2016, 25(8):1419-1424(in Chinese)
杨秀敏, 任广萌, 李立新, 等. 土壤pH值对重金属形态的影响及其相关性研究[J]. 中国矿业, 2017, 26(6):79-83 Yang X M, Ren G M, Li L X, et al. Effect of pH value on heavy metals form of soil and their relationship[J]. China Mining Magazine, 2017, 26(6):79-83(in Chinese)
Wang J J, Zeng X B, Zhang H, et al. Effect of exogenous phosphate on the lability and phytoavailability of arsenic in soils[J]. Chemosphere, 2018, 196:540-547
Lee S H, Kim E Y, Park H, et al. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products[J]. Geoderma, 2011, 161(1-2):1-7
黄黎粤, 丁竹红, 胡忻, 等. 生物炭施用对小麦和玉米幼苗根际和非根际土壤中Pb、As和Cd生物有效性的影响研究[J]. 农业环境科学学报, 2019, 38(2):348-355 Huang L Y, Ding Z H, Hu X, et al. Effects of biochars on bioavailability of Pb, As, and Cd in the rhizosphere and non-rhizosphere soil of corn and wheat seedlings[J]. Journal of Agro-Environment Science, 2019, 38(2):348-355(in Chinese)
Abd El-Azeem S A M, Ahmad M, Usman A R A, et al. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials[J]. Environmental Earth Sciences, 2013, 70(7):3411-3420
Woldetsadik D, Drechsel P, Keraita B, et al. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils[J]. SpringerPlus, 2016, 5:397
Tan W N, Li Z A, Qiu J, et al. Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in South China[J]. Pedosphere, 2011, 21(2):223-229