草甘膦的水环境行为及其对水生生物毒性的研究进展
Advances of Aquatic Environmental Behaviors and Toxicity of Glyphosate to Aquatic Organisms
-
摘要: 草甘膦是世界上应用最广泛的除草剂,在水环境中普遍存在,其环境残留可能会危害非靶标水生生物,严重威胁水生生态系统健康,因此受到人们的广泛关注。本文整理分析了水环境中草甘膦的来源、污染现状和水环境行为,详细探讨了其对水生生物的毒性效应,并且对该领域的未来发展趋势做出了简要分析与展望,旨在为草甘膦的水生生态毒性和环境风险评估提供参考依据,为合理使用草甘膦提供一定的指导作用。Abstract: Glyphosate is the most widely used herbicide in the world, and it is widespread in the aquatic environment. Glyphosate residues may harm the non-target aquatic organisms and pose serious threat to the health of aquatic ecosystem, which has been received extensive attention. In this paper, the sources, pollution status and water environmental behaviors of glyphosate are reviewed, their toxic effects to aquatic organisms are discussed and the prospects of future research are also proposed. This review would provide scientific basis for aquatic ecotoxicity and environmental risk assessment of glyphosate, which will be helpful to guide the rational use of this herbicide.
-
Key words:
- glyphosate /
- aquatic environmental behaviors /
- toxic effect
-
-
徐晶, 王迎迎, 蒲国锋, 等. 草甘膦农药在土壤中残留研究进展[J]. 吉林蔬菜, 2017(6):40-42 Xu J, Wang Y Y, Pu G F, et al. Research progress of glyphosate pesticide residues in soil[J]. Jilin Vegetable, 2017 (6):40-42(in Chinese)
沈路遥, 彭自然, 戴智. 草甘膦水生生物毒性、环境行为、检测方法研究进展[J]. 农药, 2020, 59(1):6-10 , 33 Shen L Y, Peng Z R, Dai Z. Advances in aquatic biotoxicity, environmental behavior and detection of glyphosate[J]. Agrochemicals, 2020, 59(1):6-10, 33(in Chinese)
张合彩, 杨玉娟, 石长应, 等. 草甘膦对非靶标生物的毒性研究进展[J]. 生态毒理学报, 2018, 13(5):69-75 Zhang H C, Yang Y J, Shi C Y, et al. Advance in biotoxicity research of glyphosate on non-target organisms[J]. Asian Journal of Ecotoxicology, 2018, 13(5):69-75(in Chinese)
苏少泉. 草甘膦述评[J]. 农药, 2005, 44(4):145-149 Su S Q. Glyphosate review[J]. Pesticides, 2005, 44(4):145-149(in Chinese)
Vereecken H. Mobility and leaching of glyphosate:A review[J]. Pest Management Science, 2005, 61(12):1139-1151 卢信, 赵炳梓, 张佳宝, 等. 除草剂草甘膦的性质及环境行为综述[J]. 土壤通报, 2005, 36(5):785-790 Lu X, Zhao B Z, Zhang J B, et al. Property and environmental behavior of herbicide glyphosate[J]. Chinese Journal of Soil Science, 2005, 36(5):785-790(in Chinese)
Modesto K A, Martinez C B R. Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus[J]. Chemosphere, 2010, 78(3):294-299 郑孝国. 草甘膦行业发展现状[J]. 河北化工, 2011, 34(10):36-37 , 57 Zheng X G. Development situation of glyphosate vocation[J]. Hebei Chemical Industry, 2011, 34(10):36-37, 57(in Chinese)
章娅仙. 草甘膦的合成探讨[J]. 科技信息, 2011(18):382-383 王非. 农达(41%草甘膦)对人L-02肝细胞损伤的研究[D]. 长沙:中南大学, 2008:1-2 Wang F. Study on cellular damage of human L-02 hepatocyte induced by Roundup (41 % glyphosate)[D]. Changsha:Central South University, 2008:1-2(in Chinese)
程栋. 草甘膦对泥鳅的氧化毒性效应[D]. 延安:延安大学, 2019:3-7 Cheng D. Oxidative toxicity of glyphosate on Misgurnus anguillicadatus[D]. Yan'an:Yan'an University, 2019:3 -7(in Chinese)
Aparicio V C, de Gerónimo E, Marino D, et al. Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins[J]. Chemosphere, 2013, 93(9):1866-1873 Sikorski Ł, Baciak M, Bęś A, et al. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species[J]. Aquatic Toxicology, 2019, 209:70-80 Borggaard O K, Gimsing A L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters:A review[J]. Pest Management Science, 2008, 64(4):441-456 Baylis A D. Why glyphosate is a global herbicide:Strengths, weaknesses and prospects[J]. Pest Management Science, 2000, 56(4):299-308 Howe C M, Berrill M, Pauli B D, et al. Toxicity of glyphosate-based pesticides to four North American frog species[J]. Environmental Toxicology and Chemistry, 2004, 23(8):1928-1938 Cox C, Surgan M. Unidentified inert ingredients in pesticides:Implications for human and environmental health[J]. Environmental Health Perspectives, 2006, 114(12):1803-1806 Busse M D, Ratcliff A W, Shestak C J, et al. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities[J]. Soil Biology and Biochemistry, 2001, 33(12-13):1777-1789 廖艺钰, 惠吕佳, 严吉祥, 等. 草甘膦农药对斑马鱼的急性毒性和慢性毒性研究[J]. 广州化工, 2020, 48(21):66-68 Liao Y Y, Hui L J, Yan J X, et al. Study on acute and chronic toxicity of glyphosate to zebrafish[J]. Guangzhou Chemical Industry, 2020, 48(21):66-68(in Chinese)
Bento C P M, Commelin M C, Baartman J E M, et al. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes:A flume experiment[J]. Environmental Pollution, 2018, 234:1011-1020 Avigliano E, Schenone N F. Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest Mountain rivers (South America)[J]. Microchemical Journal, 2015, 122:149-158 Battaglin W A, Meyer M T, Kuivila K M, et al. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation[J]. Journal of the American Water Resources Association, 2014, 50(2):275-290 Maqueda C, Undabeytia T, Villaverde J, et al. Behaviour of glyphosate in a reservoir and the surrounding agricultural soils[J]. The Science of the Total Environment, 2017, 593-594:787-795 Skeff W, Neumann C, Schulz-Bull D E. Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study[J]. Marine Pollution Bulletin, 2015, 100(1):577-585 Shu W, Liu B, Yuan D, et al. A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection[J]. Talanta, 2016, 161(9):700-706 Feng J C, Thompson D G, Reynolds P E. Fate of glyphosate in a Canadian forest watershed. 1. Aquatic residues and off-target deposit assessment[J]. Journal of Agricultural and Food Chemistry, 1990, 38(4):1110-1118 Peruzzo P J, Porta A A, Ronco A E. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina[J]. Environmental Pollution, 2008, 156(1):61-66 Castro Berman M, Marino D J G, Quiroga M V, et al. Occurrence and levels of glyphosate and AMPA in shallow lakes from the pampean and patagonian regions of Argentina[J]. Chemosphere, 2018, 200:513-522 李祥平, 齐剑英, 陈永亨. 离子色谱法测定环境水体中的卤乙酸和草甘膦[J]. 应用化学, 2009, 26(4):447-450 Li X P, Qi J Y, Chen Y H. Determination of dichloroacetic acid, trichloroacetic acid and glyphosate in environmental water by ion chromatography with large volume direct injection[J]. Chinese Journal of Applied Chemistry, 2009, 26(4):447-450(in Chinese)
郭浩, 张松, 宋胜利, 等. 亲水性相互作用色谱-串联质谱联用法检验鱼塘水中的草甘膦[J]. 分析试验室, 2013, 32(6):93-96 Guo H, Zhang S, Song S L, et al. Determination of glyphosate residues in fishpond water using hydrophilic interaction chromatographytandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2013, 32(6):93-96(in Chinese)
王静, 刘铮铮, 许行义, 等. 浙江省饮用水源有机毒物污染特征及健康风险研究[J]. 环境污染与防治, 2010, 32(7):29-33 Wang J, Liu Z Z, Xu X Y, et al. Study on pollution pattern and health risk of organic toxicants in Zhejiang source water[J]. Environmental Pollution & Control, 2010, 32(7):29-33(in Chinese)
Xing B, Chen H L, Zhang X M. Removal of organic phosphorus and formaldehyde in glyphosate wastewater by CWO and the lime-catalyzed formose reaction[J]. Water Science and Technology, 2017, 75(6):1390-1398 Botta F, Lavison G, Couturier G, et al. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems[J]. Chemosphere, 2009, 77(1):133-139 Grandcoin A, Piel S, Baurès E. AminoMethylPhosphonic acid (AMPA) in natural waters:Its sources, behavior and environmental fate[J]. Water Research, 2017, 117:187-197 van Stempvoort D R, Spoelstra J, Senger N D, et al. Glyphosate residues in rural groundwater, Nottawasaga River Watershed, Ontario, Canada[J]. Pest Management Science, 2016, 72(10):1862-1872 Bento C P M, Goossens D, Rezaei M, et al. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil[J]. Environmental Pollution, 2017, 220(Pt B):1079-1089 Coupe R H, Kalkhoff S J, Capel P D, et al. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins[J]. Pest Management Science, 2012, 68(1):16-30 Brady N C, Weil R R. The Nature and Properties of Soils[M]. 14th edition. Pearson Education, 1999:333 Kjær J, Ernsten V, Jacobsen O H, et al. Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils[J]. Chemosphere, 2011, 84(4):471-479 Carlisle S M, Trevors J T. 涂从.译. 环境中的草甘膦[J]. 农药译丛, 1990, 12(2):6-10, 5 顾友多, 范宾, 董学胜. 草甘膦的危险性分类研究[J]. 职业卫生与应急救援, 2008, 26(2):80-83 朱国念, 郭江峰, 孙锦荷. 应用14C核素研究草甘膦在水域生态系中的迁移、生物富集与消失动态[J]. 核农学报, 2002, 16(3):185-190 Zhu G N, Guo J F, Sun J H. Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic ecosystem by utilizing 14C tracer technique[J]. Acta Agriculturae Nucleatae Sinica, 2002, 16(3):185-190(in Chinese)
Wang Y S, Jaw C G, Chen Y L. Accumulation of 2,4-D and glyphosate in fish and water hyacinth[J]. Water, Air, and Soil Pollution, 1994, 74(3-4):397-403 王军华, 王易芬, 陈蕾蕾, 等. 除草剂草甘膦微生物降解技术研究进展[J]. 江苏农业科学, 2016, 44(4):8-12 Dick R E, Quinn J P. Glyphosate-degrading isolates from environmental samples:Occurrence and pathways of degradation[J]. Applied Microbiology and Biotechnology, 1995, 43(3):545-550 Sviridov A V, Shushkova T V, Zelenkova N F, et al. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp.[J]. Applied Microbiology and Biotechnology, 2012, 93(2):787-796 Karpouzas D G, Singh B K. Microbial degradation of organophosphorus xenobiotics:Metabolic pathways and molecular basis[J]. Advances in Microbial Physiology, 2006, 51:119-225 Fan J Y, Yang G X, Zhao H Y, et al. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil[J]. The Journal of General and Applied Microbiology, 2012, 58(4):263-271 Shinabarger D L, Braymer H D. Glyphosate catabolism by Pseudomonas sp. strain PG2982[J]. Journal of Bacteriology, 1986, 168(2):702-707 Moore J K, Braymer H D, Larson A D. Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate[J]. Applied and Environmental Microbiology, 1983, 46(2):316-320 Jacob G S, Garbow J R, Hallas L E, et al. Metabolism of glyphosate in Pseudomonas sp. strain LBr[J]. Applied and Environmental Microbiology, 1988, 54(12):2953-2958 Peñaloza-Vazquez A, Mena G L, Herrera-Estrella L, et al. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei[J]. Applied and Environmental Microbiology, 1995, 61(2):538-543 Balthazor T M, Hallas L E. Glyphosate-degrading microorganisms from industrial activated sludge[J]. Applied and Environmental Microbiology, 1986, 51(2):432-434 Obojska A, Lejczak B, Kubrak M. Degradation of phosphonates by streptomycete isolates[J]. Applied Microbiology and Biotechnology, 1999, 51(6):872-876 Liu C M, McLean P A, Sookdeo C C, et al. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae[J]. Applied and Environmental Microbiology, 1991, 57(6):1799-1804 Duncan K, Lewendon A, Coggins J R. The purification of 5-enolpyruvylshikimate 3-phosphate synthase from an overproducing strain of Escherichia coli[J]. FEBS Letters, 1984, 165(1):121-127 刘攀. 草甘膦对土壤微生态的影响及其抗性和降解真菌的研究[D]. 长春:吉林大学, 2009:49 Liu P. Effects of glyphosate on the soil microecosystem and research of glyphosate-degradation and glyphosate-resistance fungi[D]. Changchun:Jilin University, 2009:49(in Chinese) Obojska A, Ternan N G, Lejczak B, et al. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20[J]. Applied and Environmental Microbiology, 2002, 68(4):2081-2084 Gandhi K, Khan S, Patrikar M, et al. Exposure risk and environmental impacts of glyphosate:Highlights on the toxicity of herbicide co-formulants[J]. Environmental Challenges, 2021, 4:100149 Burrows H D, Canle L M, Santaballa J A, et al. Reaction pathways and mechanisms of photodegradation of pesticides[J]. Journal of Photochemistry and Photobiology B, Biology, 2002, 67(2):71-108 Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11):6503-6570 Mrowetz M, Selli E. Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2006, 180(1-2):15-22 赵硕伟. ZnO纳米粒子光催化降解失效农药草甘膦的研究[J]. 农业环境科学学报, 2012, 31(1):54-59 Zhao S W. Study on the photocatalytic degradation of failure glyphosate pesticide by ZnO nanoparticle[J]. Journal of Agro-Environment Science, 2012, 31(1):54-59(in Chinese)
杜沁媛. 二氧化钛/氮化碳的制备及其对草甘膦光催化性能的研究[D]. 长春:长春理工大学, 2015:17-37 Du Q Y. Study on the preparation of TiO2/C3 申元丽, 马金锋, 赵旭, 等. 臭氧氧化降解除草剂草甘膦的实验研究[J]. 环境科学学报, 2011, 31(8):1647-1652 Shen Y L, Ma J F, Zhao X, et al. Ozonation of herbicide glyphosate[J]. Acta Scientiae Circumstantiae, 2011, 31(8):1647-1652(in Chinese)
Mehrsheikh A, Bleeke M, Brosillon S, et al. Investigation of the mechanism of chlorination of glyphosate and glycine in water[J]. Water Research, 2006, 40(16):3003-3014 Manassero A, Passalia C, Negro A C, et al. Glyphosate degradation in water employing the H2O2/UVC process[J]. Water Research, 2010, 44(13):3875-3882 焦兆飞. 电催化MnO2氧化降解草甘膦的研究[D]. 天津:河北工业大学, 2012:48-49 Jiao Z F. MnO2 oxidative degradation of glyphosate catalyzed by electrochemical process[D]. Tianjin:Hebei University of Technology, 2012 :48-49(in Chinese)
杨帆, 陆雪梅, 刘志英, 等. 次氯酸钠氧化与铁盐沉淀组合处理废水中的草甘膦[J]. 工业水处理, 2017, 37(5):30-34 Yang F, Lu X M, Liu Z Y, et al. Combined process of sodium hypochlorite oxidation and ferric salt precipitation for treating glyphosate in wastewater[J]. Industrial Water Treatment, 2017, 37(5):30-34(in Chinese)
周长印. 改性聚苯乙烯树脂制备及吸附/氧化去除水中草甘膦的研究[D]. 青岛:青岛科技大学, 2018:13-67 Zhou C Y. Removal of glyphosate from aqueous solution by modified polystyrene resin[D]. Qingdao:Qingdao University of Science & Technology, 2018:13 -67(in Chinese)
Williams G M, Kroes R, Munro I C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans[J]. Regulatory Toxicology and Pharmacology, 2000, 31(2):117-165 Tsui M T, Chu L M. Aquatic toxicity of glyphosate-based formulations:Comparison between different organisms and the effects of environmental factors[J]. Chemosphere, 2003, 52(7):1189-1197 Co E, Cd N, Lc A, et al. Acute toxicity of glyphosate-based herbicide glycot on juvenile African cat fish Clarias gariepinus (Burchell 1822)[J]. Journal of Fisheries & Livestock Production, 2017, 5(3):1-4 Roy N M, Carneiro B, Ochs J. Glyphosate induces neurotoxicity in zebrafish[J]. Environmental Toxicology and Pharmacology, 2016, 42:45-54 马晓洁. 草甘膦对大型溞生长繁殖及抗氧化系统的影响[D]. 新乡:河南师范大学, 2019:10-42 Ma X J. Effects of glyphosate on growth, reproduction and antioxidant system of Daphnia magna[D]. Xinxiang:Henan Normal University, 2019:10 -42(in Chinese)
Cavalcante D G S M, Martinez C B R, Sofia S H. Genotoxic effects of Roundup® on the fish Prochilodus lineatus[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2008, 655(1-2):41-46 洪宇航. 草甘膦对中华绒螯蟹成蟹主要免疫指标的影响[J]. 江苏农业科学, 2018, 46(12):136-140 Hong Y H. Impacts of glyphosate on main immune parameters of adult Chinese mitten crab, Eriochier sinensis[J]. Jiangsu Agricultural Sciences, 2018, 46(12):136-140(in Chinese)
Kreutz L C, Barcellos L J G, Silva T O, et al. Acute toxicity test of agricultural pesticides on silver catfish (Rhamdia quelen) fingerlings[J]. Ciência Rural, 2008, 38(4):1050-1055 史建华, 刘智俊, 陆锦天, 等. 草甘膦对中华绒螯蟹幼蟹的毒性影响[J]. 水产科技情报, 2015, 42(5):239-242 蔡道基, 杨佩芝, 龚瑞忠, 等. 化学农药环境安全评价试验准则:GB/T 31270[S]. 北京:国家环境保护局, 1989 傅建炜, 史梦竹, 李建宇, 等. 草甘膦对草鱼、鲢鱼和鲫鱼的毒性[J]. 生物安全学报, 2013, 22(2):119-122 Fu J W, Shi M Z, Li J Y, et al. Toxicity of glyphosate on grass carp (Ctenopharyngodon idellus), chub (Hypophthalmictuthys molitrix) and crucian (Carassius auratus)[J]. Journal of Biosafety, 2013, 22(2):119-122(in Chinese)
南旭阳, 张艳丹, 黄小莲. 除草剂"草甘膦"对泥鳅白细胞的影响[J]. 温州师范学院学报:自然科学版, 2003, 24(2):72-74 Nan X Y, Zhang Y D, Huang X L. Effect of mixgurnus anguillicaudatus induced by glyphosate[J]. Journal of Wenzhou Teachers College, 2003, 24(2):72-74(in Chinese)
吴琴. 微囊藻毒素-LR诱发斑马鱼神经毒性的分子机制研究[D]. 武汉:华中农业大学, 2019:24-124 Wu Q. Molecular mechanisms of neurotoxicity induced by microcystin-LR in zebrafish[D]. Wuhan:Huazhong Agricultural University, 2019:24 -124(in Chinese)
王佳, 吴航利, 管融资, 等. 环境污染物对斑马鱼神经毒性的研究进展[J]. 延安大学学报:自然科学版, 2019, 38(2):97-102 Wang J, Wu H L, Guan R Z, et al. Research progress on the neurotoxicity of environmental pollutants to zebrafish[J]. Journal of Yanan University:Natural Science Edition, 2019, 38(2):97-102(in Chinese)
Sobjak T M, Romão S, do Nascimento C Z, et al. Assessment of the oxidative and neurotoxic effects of glyphosate pesticide on the larvae of Rhamdia quelen fish[J]. Chemosphere, 2017, 182:267-275 Cattani D, Cesconetto P A, Tavares M K, et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring:Implication of glutamate excitotoxicity and oxidative stress[J]. Toxicology, 2017, 387:67-80 de Souza J S, Laureano-Melo R, Herai R H, et al. Maternal glyphosate-based herbicide exposure alters antioxidant-related genes in the brain and serum metabolites of male rat offspring[J]. Neurotoxicology, 2019, 74:121-131 Faria M, Bedrossiantz J, Ramírez J R R, et al. Glyphosate targets fish monoaminergic systems leading to oxidative stress and anxiety[J]. Environment International, 2021, 146:106253 Paganelli A, Gnazzo V, Acosta H, et al. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling[J]. Chemical Research in Toxicology, 2010, 23(10):1586-1595 Roy N M, Carneiro B, Ochs J. Glyphosate induces neurotoxicity in zebrafish[J]. Environmental Toxicology and Pharmacology, 2016, 42:45-54 Gholami-Seyedkolaei S J, Mirvaghefi A, Farahmand H, et al. Effect of a glyphosate-based herbicide in Cyprinus carpio:Assessment of acetylcholinesterase activity, hematological responses and serum biochemical parameters[J]. Ecotoxicology and Environmental Safety, 2013, 98:135-141 Menéndez-Helman R J, Ferreyroa G V, dos Santos Afonso M, et al. Glyphosate as an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(1):6-9 Cattaneo R, Clasen B, Lucia Loro V, et al. Toxicological responses of Cyprinus carpio exposed to the herbicide penoxsulam in rice field conditions[J]. Journal of Applied Toxicology, 2011, 31(7):626-632 Murussi C R, Thorstenberg M L, Leitemperger J, et al. Toxic effects of penoxsulam herbicide in two fish species reared in southern Brazil[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(1):81-84 Liu L H, Zhou Y J, Ding L, et al. Induction of apoptosis by VB1 in breast cancer cells:The role of reactive oxygen species and Bcl-2 family proteins[J]. International Journal of Molecular Medicine, 2014, 33(2):423-430 Monteiro D A, de Almeida J A, Rantin F T, et al. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600(methyl parathion)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2006, 143(2):141-149 王重刚, 余群, 郁昂, 等. 苯并(a)芘和芘暴露对梭鱼肝脏超氧化物歧化酶活性的影响[J]. 海洋环境科学, 2002, 21(4):10-13 Wang C G, Yu Q, Yu A, et al. Effect of benzo(a)pyrene and pyrene exposure on hepatic superoxide dismutase in Mugil so-iuy[J]. Marine Environmental Science, 2002, 21(4):10-13(in Chinese)
Bagchi D, Bagchi M, Hassoun E A, et al. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides[J]. Toxicology, 1995, 104(1-3):129-140 Nwani C D, Nagpure N S, Kumar R, et al. DNA damage and oxidative stress modulatory effects of glyphosate-based herbicide in freshwater fish, Channa punctatus[J]. Environmental Toxicology and Pharmacology, 2013, 36(2):539-547 Lajmanovich R C, Attademo A M, Peltzer P M, et al. Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura:Bufonidae) tadpoles:B-esterases and glutathione S-transferase inhibitors[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(4):681-689 Modesto K A, Martinez C B R. Effects of Roundup transorb on fish:Hematology, antioxidant defenses and acetylcholinesterase activity[J]. Chemosphere, 2010, 81(6):781-787 Modesto K A, Martinez C B R. Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus[J]. Chemosphere, 2010, 78(3):294-299 Sobjak T M, Romão S, do Nascimento C Z, et al. Assessment of the oxidative and neurotoxic effects of glyphosate pesticide on the larvae of Rhamdia quelen fish[J]. Chemosphere, 2017, 182:267-275 Hong Y H, Yang X Z, Huang Y, et al. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide Roundup on the freshwater shrimp, Macrobrachium nipponensis[J]. Chemosphere, 2018, 210:896-906 张天宝. 当前遗传毒理学的研究动态[J]. 毒理学杂志, 2007, 21(5):359-365 毛蕾. 常见抗生素类兽药对作物的遗传毒性的研究[D]. 新乡:河南师范大学, 2015:12-37 Mao L. Common antibiotic genotoxicity of venterinary drugs on crops[D]. Xinxiang:Henan Normal University, 2015:12 -37(in Chinese)
Annett R, Habibi H R, Hontela A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment[J]. Journal of Applied Toxicology, 2014, 34(5):458-479 袁建军, 谢嘉华, 张猛, 等. 草甘膦铵盐对3种滩涂动物抗氧化酶、丙二醛及大弹涂鱼红细胞微核的影响[J]. 农药学学报, 2018, 20(5):587-594 Yuan J J, Xie J H, Zhang M, et al. Effects of glyphosate ammonium on antioxidant enzyme and malondialdehyde in three kinds of mudflat animals and on the micronuclei in erythrocyte of Boleophthalmus pectinirostris[J]. Chinese Journal of Pesticide Science, 2018, 20(5):587-594(in Chinese)
陈建华, 李智, 周志华. 维生素C对草甘膦诱发的斑马鱼外周血红细胞微核及核异常的缓解作用[J]. 淡水渔业, 2013, 43(6):45-50 Chen J H, Li Z, Zhou Z H. The relief of vitamin C on micronuclei and nuclear anomalies of peripheral red blood cells in Danio rerio induced by glyphosate[J]. Freshwater Fisheries, 2013, 43(6):45-50(in Chinese)
Guilherme S, Gaivão I, Santos M A, et al. DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide -Elucidation of organ-specificity and the role of oxidative stress[J]. Mutation Research, 2012, 743(1-2):1-9 Banu B S, Danadevi K, Rahman M F, et al. Genotoxic effect of monocrotophos to sentinel species using comet assay[J]. Food and Chemical Toxicology, 2001, 39(4):361-366 Akcha F, Spagnol C, Rouxel J. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos[J]. Aquatic Toxicology, 2012, 106-107:104-113 Fournier M, Cyr D, Blakley B, et al. Phagocytosis as a biomarker of immunotoxicity in wildlife species exposed to environmental xenobiotics[J]. Integrative and Comparative Biology, 2015, 40(3):412-420 Colosio C, Birindelli S, Corsini E, et al. Low level exposure to chemicals and immune system[J]. Toxicology and Applied Pharmacology, 2005, 207(2 Suppl.):320-328 Wong S, Fournier M, Coderre D, et al. Animal biomarkers as pollution indicators[J]. Choice Reviews Online, 1992, 30(3):30-1502 Kreutz L C, Gil Barcellos L J, de Faria Valle S, et al. Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate[J]. Fish & Shellfish Immunology, 2011, 30(1):51-57 Richard S, Prévot-D'Alvise N, Bunet R, et al. Effect of a glyphosate-based herbicide on gene expressions of the cytokines interleukin-1β and interleukin-10 and of heme oxygenase-1 in European Sea bass, Dicentrarchus labrax L.[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(3):294-299 Gagnaire B, Gay M, Huvet A, et al. Combination of a pesticide exposure and a bacterial challenge:in vivo effects on immune response of Pacific oyster, Crassostrea gigas (Thunberg)[J]. Aquatic Toxicology, 2007, 84(1):92-102 Ma J G, Bu Y Z, Li X Y. Immunological and histopathological responses of the kidney of common carp (Cyprinus carpio L.) sublethally exposed to glyphosate[J]. Environmental Toxicology and Pharmacology, 2015, 39(1):1-8 Zhong G D, Wu Z H, Yin J, et al. Responses of Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara to glyphosate exposure[J]. Chemosphere, 2018, 193:385-393 Ma J, Lin F, Wang S, et al. Toxicity of 21 herbicides to the green alga Scenedesmus quadricauda[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71(3):594-601 Dosnon-Olette R, Couderchet M, Oturan M A, et al. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate[J]. International Journal of Phytoremediation, 2011, 13(6):601-612 Sobrero M C, Rimoldi F, Ronco A E. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5):537-543 Cruz C, Silva A F, Luna L V, et al. Glyphosate effectiveness in the control of macrophytes under a greenhouse condition[J]. Planta Daninha, 2015, 33(2):241-247 张琼, 袁兴超, 裴兆虎, 等. 草甘膦对铜绿微囊藻生长的影响及其机理研究[J]. 安徽农业科学, 2015, 43(36):157-159 , 206 Zhang Q, Yuan X C, Pei Z H, et al. Effects of glyphosate on Microcystis aeruginosa growth and related mechanisms[J]. Journal of Anhui Agricultural Sciences, 2015, 43(36):157-159, 206(in Chinese)
周聪. 两种灭生性除草剂暴露对铜绿微藻藻毒素产生和分泌影响的机制研究[D]. 杭州:浙江工业大学, 2013:53-54 Zhou C. The synthesis and release mechanism research of microcystin of Microcystis aeruginosa exposed to two sterilant herbicides[D]. Hangzhou:Zhejiang University of Technology, 2013:53 -54(in Chinese)
王洪斌, 宋秀梅, 丁媛, 等. 水环境中草甘膦对塔胞藻、塔玛亚历山大藻的毒性效应[J]. 农药, 2014, 53(1):45-48 Wang H B, Song X M, Ding Y, et al. The toxicological effects of glyphosate to pyramidomonas Delicatula and Alexandrium tamarense in water environment[J]. Agrochemicals, 2014, 53(1):45-48(in Chinese)
Chan K Y, Leung S C. Effects of paraquat and glyphosate on growth, respiration, and enzyme activity of aquatic bacteria[J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(1):52-59 Pesce S, Batisson I, Bardot C, et al. Response of spring and summer riverine microbial communities following glyphosate exposure[J]. Ecotoxicology and Environmental Safety, 2009, 72(7):1905-1912 DeLorenzo M E, Scott G I, Ross P E. Toxicity of pesticides to aquatic microorganisms:A review[J]. Environmental Toxicology and Chemistry, 2001, 20(1):84-98 Battaglin W A, Meyer M T, Kuivila K M, et al. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation[J]. JAWRA Journal of the American Water Resources Association, 2014, 50(2):275-290 le Du-Carrée J, Cabon J, Morin T, et al. Immunological and metabolic effects of acute sublethal exposure to glyphosate or glyphosate-based herbicides on juvenile rainbow trout, Oncorhynchus mykiss[J]. The Science of the Total Environment, 2021, 784:147162 Kittle R P, McDermid K J, Muehlstein L, et al. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus[J]. Marine Pollution Bulletin, 2018, 127:170-174 -

计量
- 文章访问数: 4932
- HTML全文浏览数: 4932
- PDF下载数: 110
- 施引文献: 0