过硫酸钠氧化脱色罗丹明B——影响因素和机理

李沁蔓, 杨冰, 陈坷铭, 孟永财, 孟元, 刘宇程. 过硫酸钠氧化脱色罗丹明B——影响因素和机理[J]. 环境化学, 2021, (2): 642-652. doi: 10.7524/j.issn.0254-6108.2020081206
引用本文: 李沁蔓, 杨冰, 陈坷铭, 孟永财, 孟元, 刘宇程. 过硫酸钠氧化脱色罗丹明B——影响因素和机理[J]. 环境化学, 2021, (2): 642-652. doi: 10.7524/j.issn.0254-6108.2020081206
LI Qinman, YANG Bing, CHEN Keming, MENG Yongcai, MENG Yuan, LIU Yucheng. Rhodamine B decolorization by sodium persulfate oxidation: Influencing factors and mechanism[J]. Environmental Chemistry, 2021, (2): 642-652. doi: 10.7524/j.issn.0254-6108.2020081206
Citation: LI Qinman, YANG Bing, CHEN Keming, MENG Yongcai, MENG Yuan, LIU Yucheng. Rhodamine B decolorization by sodium persulfate oxidation: Influencing factors and mechanism[J]. Environmental Chemistry, 2021, (2): 642-652. doi: 10.7524/j.issn.0254-6108.2020081206

过硫酸钠氧化脱色罗丹明B——影响因素和机理

    通讯作者: 杨冰, E-mail: yangb2016@swpu.edu.cn
  • 基金项目:

    国家自然科学基金(21707111)和西南石油大学科研"启航计划"项目(2017QHZ018)资助.

Rhodamine B decolorization by sodium persulfate oxidation: Influencing factors and mechanism

    Corresponding author: YANG Bing, yangb2016@swpu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21707111)and Southwest Petroleum University Scientific Research "Qihang Plan" Project (2017QHZ018).
  • 摘要: 采用过硫酸钠(PDS)直接氧化和催化活化氧化脱色罗丹明B (RhB),分别考察了PDS剂量、pH、催化剂、Cl-浓度对RhB脱色的影响.结果表明,PDS在无外加催化剂下能够有效脱色RhB,pH越低,脱色率越高;当pH 2.4,PDS用量为3.5 g·L-1,在120 min内RhB的脱色率可达92%;自由基淬灭实验表明,酸性条件下主要为PDS直接氧化脱色RhB,并存在小部分硫酸根自由基(SO4·-)作用.在pH 5.6、pH 8.0条件下,外加活性炭纤维(ACF)、四氧化三铁(Fe3O4)、Fe3O4负载型催化剂(ACF/Fe3O4)可促进PDS对RhB脱色;在pH 2.4条件下,外加ACF对RhB脱色的促进作用较小,Fe3O4、ACF/Fe3O4对RhB脱色有一定抑制作用.不同pH和催化剂处理下,低浓度Cl-(0.01、0.04 mol·L-1)对RhB脱色速率都呈现抑制作用,高浓度Cl-(0.08 mol·L-1)相对于低浓度Cl-处理都呈促进作用.不同浓度Cl-处理在反应前60 min RhB脱色速率差异较大,而反应120 min后脱色率差异较小.提出Cl-通过调控SO4·-脱色RhB途径来影响RhB脱色速率的机理,Cl-竞争消耗SO4·-降低RhB脱色速率,但经一系列反应生成的Cl2·-能与RhB快速反应而提高RhB脱色速率;Cl-对RhB的脱色反应速率的影响存在抑制-促进双重机制,且与Cl-浓度相关.研究结果为基于PDS直接氧化和催化氧化处理含盐染料废水的研究和应用提供了一定的理论依据.
  • 加载中
  • [1] 任南琪,周显娇,郭婉茜,等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1):84-94.

    REN N Q, ZHOU X J, GUO W X, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1):84-94(in Chinese).

    [2] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation:A review[J]. Chemosphere, 2016, 151(5):178-188.
    [3] WACAWEK S, LUTZE H V, GRVBEL K, et al. Chemistry of persulfates in water and wastewater treatment:A review[J]. Chemical Engineering Journal, 2017, 330(15):44-62.
    [4] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation:A review on heterogeneous catalysts and applications[J]. Elsevier, 2016, 181:103-117.
    [5] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334:1502-1517.
    [6] 房聪,房烽,张黎明,等. 秸秆活性炭活化过一硫酸盐降解酸性橙7[J]. 环境科学学报, 2018, 38(1):242-250.

    FANG C, FANG F, ZHANG L M, et al. Degradation of acid orange 7 by peroxymonosulfate activated by straw activated carbon[J]. Acta Scientiae Circumstantiae, 2018, 38(1):242-250(in Chinese).

    [7] WEI X, WANG S, SHI Y, et al. Application of positively charged composite hollow-fiber nanofiltration membranes for dye purification[J]. Industrial & Engineering Chemistry Research, 2013, 53(36):14036-14045.
    [8] JIAN H, ZHANG K. The high flux poly (m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination[J]. Desalination, 2011, 282:19-26.
    [9] 程家迪,蒋路平,罗金飞,等. 印染废水深度处理及中水回用技术现状[J]. 染整技术, 2014, 36(11):5-9.

    CHENG J D, JIANG L P, LUO J F, et al. Technical status of advanced treatment and reclaimed water reuse for printing and dyeing wastewater[J]. Textile Dyeing and Finishing Journal, 2014, 36(11):5-9(in Chinese).

    [10] MUTHUKUMAR M, SELVAKUMAR N. Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation[J]. Dyes & Pigments, 2004, 62(3):221-228.
    [11] DONG Y, CHEN J, LI C, et al. Decoloration of three azo dyes in water by photocatalysis of Fe(Ⅲ)-oxalate complexes/H2O2 in the presence of inorganic salts[J]. Dyes & Pigments, 2007, 73(2):261-268.
    [12] YANG Y, PIGNATELLO J J, MA J, et al. Effect of matrix components on UV/H2O2 and UV/S2O82- advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities[J]. Water Research, 2016, 89:192-200.
    [13] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental science & technology, 2014, 48(4):2344-2351.
    [14] PENNINGTON D E, HAIM A. Stoichiometry and mechanism of the chromium(Ⅱ)-peroxydisulfate reaction[J]. Journal of the American Chemical Society, 1968, 90(14):3700-3704.
    [15] LEI Y, CHEN C, AI J, et al. Selective decolorization of cationic dyes by peroxymonosulfate:non-radical mechanism and effect of chloride[J]. Rsc Advances, 2016, 6(2):866-871.
    [16] LI C X, CHEN C B, WANG Y J, et al. Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation[J]. Chemical Engineering Journal, 2019, 362:570-575.
    [17] ZHAO T, CHEN Y, WANG Y R, et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation[J]. Environmental Science & Technology, 2014, 48(10):5868-5875.
    [18] JIANG L, ZHANG Y, ZHOU M, et al. Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism[J]. Journal of Hazardous Materials, 2018, 358:53-61.
    [19] YAO C H, ZHANG Y Q, DU M M, et al. Insights into the mechanism of non-radical activation of persulfate via activated carbon for the degradation of p-chloroaniline[J]. Chemical Engineering Journal, 2019, 362:262-268.
    [20] LEE H, LEE H J, JEONG J, et al. Activation of persulfates by carbon nanotubes:Oxidation of organic compounds by nonradical mechanism[J]. Chemical Engineering Journal, 2015, 266:28-33.
    [21] JAIN R, MATHUR M, SIKARWAR S, et al. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments[J]. Journal of Environmental Management, 2007, 85(4):956-964.
    [22] RICHARDSON S D, WILLSON C S, RUSCH K A. Use of rhodamine water tracer in the marshland upwelling system[J]. Ground Water, 2004, 42(5):678-688.
    [23] 曾园园. 活性炭纤维负载TiO2光催化剂的制备、表征及降解甲醛研究[D]. 湘潭:湘潭大学, 2014. ZENG Y Y. Study on the preparation、characterization of activated carbon fiber supported TiO2 photocatalyst and the degradation of formaldehyde[D]. Xiangtan:Xiangtan University, 2014(in Chinese).
    [24] 杨焱明,冷艳秋,林欣,等. Fe3O4/石墨烯活化过硫酸盐降解罗丹明B废水的研究[J]. 环境科学与管理. 2014, 39(4):80-84.

    YANG Y M, LENG Y Q, LIN X, et al. Degradation of Rhodamine B wastewater by persulfate acticated with Fe3O4/graphene[J]. Environmental Science and Management, 2014, 39(4):80-84(in Chinese).

    [25] 程祥珍,肖加余,谢征芳,等. 活性炭纤维研究与应用进展[J]. 材料科学与工程学报. 2003(2):283-288. CHENG X Z, XIAO J Y, XIE Z F, et al. Research and application progress of activated carbon fiber[J]. Journal of Materials Science and Engineering. 2003

    (2):283-288(in Chinese).

    [26] 王冬华. 磁性Fe3O4纳米材料的制备及应用研究[J]. 化工科技. 2018, 26(1):67-70.

    WANG D H. Preparation and application research of magnetic Fe3O4 nanometer materials[J]. Science & Technology in Chemical Industry. 2018, 26(1):67-70(in Chinese).

    [27] GOVINDAN K, RAJA M, NOEL M, et al. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2014, 272:42-51.
    [28] KUBOTA H, HARIYA Y, KURODA S, et al. Effect of photoirradiation on potassium persulfate-surface oxidation of low-density polyethylene film[J]. Polymer Degradation and Stabilityu, 2001, 72(2):223-227.
    [29] LIANG C, WANG Z, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2006, 66(1):106-113.
    [30] SHARMA J, MISHRA I M, KUMAR V. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes:UV/H2O2 and UV/S2O82- oxidation systems[J]. Journal of Environmental Management, 2015, 156:266-275.
    [31] HWANG S, HULING S G, KO S. Fenton-like degradation of MTBE:Effects of iron counter anion and radical scavengers[J]. Chemosphere, 2009, 78(5):563-568.
    [32] LI B, LI L, LIN K, et al. Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process[J]. Ultrasonics-Sonochemistry, 2013, 20(3):855-863.
    [33] MONTEAGUDO J M, DURÁN A, MARTIN I S, et al. Roles of different intermediate active species in the mineralization reactions of phenolic pollutants under a UV-A/C photo-Fenton process[J]. Applied Catalysis B, Environmental, 2011, 106(1):242-249.
    [34] STEMMLER A J, BURROWS C J. Guanine versus deoxyribose damage in DNA oxidation mediated by vanadium(Ⅳ) and vanadium(Ⅴ) complexes[J]. Journal of Biological Inorganic Chemistry Jbic A Publication of the Society of Biological Inorganic Chemistry, 2001, 6(1):100-106.
    [35] LIN Y M, LI D Z, HU J H, et al. Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 Composite[J]. Journal of Physical Chemistry C, 2012, 116(9):5764-5772.
    [36] WANG X, WANG J, GUO P, et al. Chemical effect of swirling jet-induced cavitation:Degradation of rhodamine B in aqueous solution[J]. Ultrasonics Sonochemistry, 2008, 15(4):357-363.
    [37] AN T, ZHU X, XIONG Y. Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor[J]. Chemosphere, 2002, 46(6):897-903.
    [38] 李颖,岳钦艳,高宝玉,等. 活性炭纤维对活性染料的吸附动力学研究[J]. 环境科学, 2007,28(11):2637-2641.

    LI Y, YUE Q Y, GAO B Y, et al. Adsorption kinetics of reactive dyes on activated carbon fiber[J]. Environmental Science, 2007,28(11):2637-2641(in Chinese).

    [39] YANG S, YANG X, SHAO X, et al. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature[J]. Journal of Hazardous Materials, 2011, 186(1):659-666.
    [40] SÁNCHEZ-POLO M, VON GUNTEN U, RIVERA-UTRILLA J. Efficiency of activated carbon to transform ozone into·OH radicals:Influence of operational parameters[J]. Water Research, 2005, 39(14):3189-3198.
    [41] USMAN M, FAURE P, RUBY C, et al. Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils[J]. Chemosphere, 2012, 87(3):234-240.
    [42] JAIN R, MATHUR M, SIKARWAR S, et al. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments[J]. Journal of Environmental Management, 2007, 85(4):956-964.
    [43] LIANG C, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9):1213-1223.
    [44] GONZÁLEZ-DAVILA M, SANTANA-CASIANO J M, MILLERO F J. Oxidation of iron (Ⅱ) nanomolar with H2O2 in seawater[J]. Geochimica Et Cosmochimica Acta, 2005, 69(1):83-93.
    [45] SANTANA-CASIANO J M, GONZÁLEZ-DAVILA M, MILLERO F J, et al. The role of Fe(Ⅱ) species on the oxidation of Fe(Ⅱ) in natural waters in the presence of O2 and H2O2[J]. Marine Chemistry, 2006, 99:70-82.
    [46] YU X I, BAO Z H, BARKER J R. Free radical reactions involving Cl, Cl2-, and S4O- in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl-[J]. Cheminform, 2004, 35:295-308.
    [47] YU X Y, BARKER J R. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism[J]. Journal of Physical Chemistry A, 2003, 107(9):1313-1324.
    [48] KISHORE K, GUHA S N, MAHADEVAN J, et al. Redox reactions of methylene blue:A pulse radiolysis study[J]. Radiation Physics & Chemistry, 1989, 34(4):721-727.
    [49] LIANG C J, LIN Y T, SHIN W H. Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies[J]. Ind Eng Chem Res, 2009, 48(18):8373-8380.
    [50] ANDREW T, THORNTON. Kinetics of oxidation of transition-metal ions by halogen radical anions. Part I. The oxidation of iron(Ⅱ) by dibromide and dichloride ions generated by flash photolysis[J]. Journal of the Chemical Society, 1973, 16(8):804-813.
  • 加载中
计量
  • 文章访问数:  3664
  • HTML全文浏览数:  3664
  • PDF下载数:  60
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-12

过硫酸钠氧化脱色罗丹明B——影响因素和机理

    通讯作者: 杨冰, E-mail: yangb2016@swpu.edu.cn
  • 1. 西南石油大学化学化工学院, 成都, 610500;
  • 2. 西南石油大学工业危废处置与资源化利用研究院, 成都, 610500;
  • 3. 中国石油集团川庆钻探工程有限公司安全环保质量监督检测研究院, 广汉, 618300
基金项目:

国家自然科学基金(21707111)和西南石油大学科研"启航计划"项目(2017QHZ018)资助.

摘要: 采用过硫酸钠(PDS)直接氧化和催化活化氧化脱色罗丹明B (RhB),分别考察了PDS剂量、pH、催化剂、Cl-浓度对RhB脱色的影响.结果表明,PDS在无外加催化剂下能够有效脱色RhB,pH越低,脱色率越高;当pH 2.4,PDS用量为3.5 g·L-1,在120 min内RhB的脱色率可达92%;自由基淬灭实验表明,酸性条件下主要为PDS直接氧化脱色RhB,并存在小部分硫酸根自由基(SO4·-)作用.在pH 5.6、pH 8.0条件下,外加活性炭纤维(ACF)、四氧化三铁(Fe3O4)、Fe3O4负载型催化剂(ACF/Fe3O4)可促进PDS对RhB脱色;在pH 2.4条件下,外加ACF对RhB脱色的促进作用较小,Fe3O4、ACF/Fe3O4对RhB脱色有一定抑制作用.不同pH和催化剂处理下,低浓度Cl-(0.01、0.04 mol·L-1)对RhB脱色速率都呈现抑制作用,高浓度Cl-(0.08 mol·L-1)相对于低浓度Cl-处理都呈促进作用.不同浓度Cl-处理在反应前60 min RhB脱色速率差异较大,而反应120 min后脱色率差异较小.提出Cl-通过调控SO4·-脱色RhB途径来影响RhB脱色速率的机理,Cl-竞争消耗SO4·-降低RhB脱色速率,但经一系列反应生成的Cl2·-能与RhB快速反应而提高RhB脱色速率;Cl-对RhB的脱色反应速率的影响存在抑制-促进双重机制,且与Cl-浓度相关.研究结果为基于PDS直接氧化和催化氧化处理含盐染料废水的研究和应用提供了一定的理论依据.

English Abstract

参考文献 (50)

目录

/

返回文章
返回