黄山景观区域氮、硫湿沉降来源与地球化学过程

江用彬, 黄燕军, 金相雷, 汪晓云, 董俐香, 张海英, 黄学文, 季宏兵, 李维, 缪鹏. 黄山景观区域氮、硫湿沉降来源与地球化学过程[J]. 环境化学, 2019, (11): 2610-2618. doi: 10.7524/j.issn.0254-6108.2018122001
引用本文: 江用彬, 黄燕军, 金相雷, 汪晓云, 董俐香, 张海英, 黄学文, 季宏兵, 李维, 缪鹏. 黄山景观区域氮、硫湿沉降来源与地球化学过程[J]. 环境化学, 2019, (11): 2610-2618. doi: 10.7524/j.issn.0254-6108.2018122001
JIANG Yongbin, HUANG Yanjun, JIN Xianglei, WANG Xiaoyun, DONG Lixiang, ZHANG Haiying, HUANG Xuewen, JI Hongbing, LI Wei, MIAO Peng. Sources and geochemical processes of nitrogen and sulfur wet deposition in mount Huangshan landscape[J]. Environmental Chemistry, 2019, (11): 2610-2618. doi: 10.7524/j.issn.0254-6108.2018122001
Citation: JIANG Yongbin, HUANG Yanjun, JIN Xianglei, WANG Xiaoyun, DONG Lixiang, ZHANG Haiying, HUANG Xuewen, JI Hongbing, LI Wei, MIAO Peng. Sources and geochemical processes of nitrogen and sulfur wet deposition in mount Huangshan landscape[J]. Environmental Chemistry, 2019, (11): 2610-2618. doi: 10.7524/j.issn.0254-6108.2018122001

黄山景观区域氮、硫湿沉降来源与地球化学过程

    通讯作者: 江用彬, E-mail: yongbin_jiang@163.com
  • 基金项目:

    安徽省自然科学基金(1608085MD82)和国家自然科学基金(41203055)资助.

Sources and geochemical processes of nitrogen and sulfur wet deposition in mount Huangshan landscape

    Corresponding author: JIANG Yongbin, yongbin_jiang@163.com
  • Fund Project: Supported by the Natural Science Foundation of Anhui Province (1608085MD82) and the National Natural Science Foundation of China (41203055).
  • 摘要: 黄山是世界著名的地质公园,近年来该地区酸雨频率增加,威胁着景区的地质生态环境.本研究通过长期降水化学观测与氮、氧、硫同位素地球化学分析,探讨黄山景区氮、硫湿沉降来源与地球化学过程,以期揭示酸雨成因.结果表明,研究期间酸雨频率为62.5%.SO42-和NO3-为主要致酸离子.[SO42-]/[NO3-]当量比均值为1.7,主要受早期氮排放和移动源递增贡献影响.氮、氧、硫同位素组成和分异数据表明,降水中SO42-和NO3-主要来源为移动源(燃油)释放,工业源(燃煤)贡献次之,降水硝酸、硫酸的形成主要为燃油燃烧及其氧化物氧化过程.Ca2+和NH4+为酸雨的主要中和因子.我国逐渐增加的移动源化石燃料排放已经对黄山景区大气环境产生显著影响.
  • 加载中
  • [1] 王文兴, 许鹏举. 中国大气降水化学研究进展[J]. 化学进展, 2009, 21(203):266-281.

    WANG W X, XU P J. Research progress in precipitation chemistry in China[J]. Progress in Chemistry, 2009, 21(203):266-281(in Chinese).

    [2] ARSENE C, OLARIU R I, MIHALOPOULOS N. Chemical composition of rainwater in the northeastern Romania, Iasi region (2003-2006)[J]. Atmospheric Environment, 2007, 41(40):9452-9467.
    [3] BASAK B, ALAGHA O. The chemical composition of rainwater over buyukcekmece Lake, Istanbul[J]. Atmospheric Research, 2004, 71(4):275-288.
    [4] 龚立, 揭芳芳, 刘兰玉, 等. 重庆黔江区大气降水的化学特征及来源分析[J]. 环境监测管理与技术, 2015, 27(3):37-40.

    GONG L, JIE F F, LIU Y L, et al. Analysis on the chemical characteristics and origin of atmospheric precipitation in Qianjiang district of Chongqing city[J]. The Administration and Technique of Environmental Monitoring, 2015, 27(3):37-40(in Chinese).

    [5] CAO Y Z, WANG S, GAN Z, et al. Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China[J]. Atmospheric Research, 2009, 94(3):462-469.
    [6] JIN Z F, WANG Y, QIAN L J, et al. Combining chemical components with stable isotopes to determine nitrate sources of precipitation in Hangzhou and Huzhou, SE China[J]. Atmospheric Pollution Research, 2019, 10:386-394.
    [7] LIU X Y, XIAO H W, XIAO H Y, et al. Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China[J]. Environmental Pollution, 2017, 230:486-494.
    [8] WU Q, HAN G. Sulfur isotope and chemical composition of the rainwater at the Three Gorges Reservoir[J]. Atmospheric Research, 2015, 155:130-140.
    [9] 张海英. 黄山北部流域化学风化过程及钙来源的锶同位素示踪[D]. 马鞍山:安徽工业大学, 2015. ZHANG H Y. Identify chemical weathering processes and calcium sources in the northern Mount Huangshan watershed using strontium isotopes and major ion chemistry[D]. Ma'anshan:Anhui University of Technology, 2015(in Chinese).
    [10] 董俐香, 江用彬, 张海英, 等. 黄山景观流域溶解态稀土元素地球化学特征[J]. 中国稀土学报, 2017,35(2):283-293.

    DONG L X, JIANG Y B, ZHANG H Y, et al. Geochemistry of dissolved rare earth elements in watershed at northern Mount Huangshan landscape[J]. Journal of the Chinese Society of Rare Earths, 2017, 35(2):283-293(in Chinese).

    [11] SHI C E, DENG X L, YANG Y J, et al. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China[J]. Advances in Atmospheric Sciences, 2014, 31(5):1157-1166.
    [12] 吴奕霄, 邱阳阳, 郭俊, 等. 不同海拔高度气溶胶粒子吸湿特征的观测研究——以黄山为例[J]. 长江流域资源与环境, 2018, 27(6):1361-1370.

    WU Y X, QIU Y Y, GUO J, et al. An observational study on the hygroscopic properties of aerosol particles at different altitudes——A case study in the Mt. Huangshan[J]. Resources and Environment in the Yangtze Basin, 2018, 27(6):1361-1370(in Chinese).

    [13] 艾东升, 郑祥民, 周立旻. 等. 近2年上海市夏季降水地球化学特征研究[J]. 环境科学, 2010, 31(9):2002-2009.

    AI D S, ZHENG X M, ZHOU L M, et al. Geochemical character of precipitation in summer of Shanghai 2008-2009[J]. Environmental Science, 2010, 31(9):2002-2009(in Chinese).

    [14] 余益军, 程钟, 李江, 等. 常州市2014年降水化学组成及来源浅析[J]. 环境化学, 2015,34(11):2136-2138.

    YU Y J, CHENG Z, LI J, et al. Analysis on the chemical composition and source of precipitation in Changzhou City in 2014[J]. Environmental Chemistry, 2015, 34(11):2136-2138(in Chinese).

    [15] 肖红伟, 肖化云, 王燕丽. 贵阳大气降水化学特征及来源分析[J]. 中国环境科学, 2010, 30(12):1590-1596.

    XIAO H W, XIAO H Y, WANG Y L. Chemical characteristics and source apportionment of precipitation in Guiyang[J]. China Environmental Science, 2010, 30(12):1590-1596(in Chinese).

    [16] 汤洁, 薛虎圣, 于晓岚, 等. 瓦里关山降水化学特征的初步分析[J]. 环境科学学报, 2000, 20(4):420-425.

    TANG J, XUE H S, YU X L, et al. The preliminary study on chemical characteristics of precipitation at Mt. Waliguan[J]. Acta Scientiae Circumstantiae, 2000, 20(4):420-425(in Chinese).

    [17] 许新辉, 郜洪文. 中国南方酸雨的分布特征及其成因分析[J]. 四川环境, 2011, 30(4):135-139.

    XU X H, GAO H W. Analysis of the distribution and causes of acid rain in southern China[J]. Sichuan Environment, 2011, 30(4):135-139(in Chinese).

    [18] 孙启斌, 肖红伟, 肖化云, 等. 南昌市大气降水化学特征及来源分析[J]. 环境科学研究, 2017, 30(12):1841-1848.

    SUN Q B, XIAO H W, XIAO H Y, et al. Chemical characteristics and source apportionment of atmospheric precipitation in Nanchang City[J]. Research of Environmental Sciences, 2017, 30(12):1841-1848(in Chinese).

    [19] 石晓非, 牛贺文, 何元庆, 等. 丽江-玉龙雪山地区大气降水化学特征[J]. 环境化学, 2017, 36(5):994-1002.

    SHI X F, NIU H W, HE Y Q, et al. Characteristics of rainwater chemistry in Lijiang-Yulong Snow Mountain[J]. Environmental Chemistry, 2017, 36(5):994-1002(in Chinese).

    [20] 王莹. 晋城市环境空气二氧化硫、氮氧化物与硫酸盐、硝酸盐相互关系的研究[D]. 太原:太原理工大学, 2012. WANG Y. Research on the relationship between sulfur dioxide, nitrogen oxide and sulfate, nitrate in ambient air in Jincheng City[D]. Taiyuan:Taiyuan University of Technology, 2012(in Chinese).
    [21] 洪业汤, 张鸿斌, 朱詠煊, 等. 中国大气降水的硫同位素组成特征[J]. 自然科学进展:国家重点实验室通讯, 1994, 4(6):741-745.

    HONG Y T, ZHANG H B, ZHU Y X, et al. Sulfur isotope composition characteristics of atmospheric precipitation in China[J]. Progress in Natural Science:National Key Laboratory Newsletter, 1994, 4(6):741-745(in Chinese).

    [22] NESTLER A, BERGLUND M, ACCOE F, et al. Isotopes for improved management of nitrate pollution in aqueous resources:review of surface water field studies[J]. Environmental Science and Pollution Research, 2011, 18(4):519-533.
    [23] BOHLKE J K, ERICKSEN G E, REVESZ K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A.[J]. Chemical Geology, 1997, 136(1-2):135-152.
    [24] ELLIOTT E M, YU Z J, COLE A S, et al. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing[J]. Science of the Total Environment, 2019, 662:393-403.
    [25] HEATON T H E. 15N/14N ratios of NOx from vehicle engines and coal-fired power stations[J]. Tellus B, 1990, 42(3):304-307.
    [26] FELIX J D, ELLIOTT E M. Isotopic composition of passively collected nitrogen dioxide emissions:Vehicle, soil and livestock source signatures[J]. Atmospheric Environment, 2014, 92:359-366.
    [27] 陈安泽, 浦庆余, 等. 黄山花岗岩地貌景观研究[M]. 北京:科学出版社, 2013. CHEN A Z, PU Q Y, et al. Landscapes of Huangshan granite[M]. Beijing:Science Press, 2013(in Chinese).
    [28]
    [29] KIM Y, LEE I, LIM C, et al. The origin and migration of the dissolved sulfate from precipitation in Seoul, Korea[J]. Environmental Pollution, 2018, 237:878-886.
    [30] FELIX J D, ELLIOTT E M, SHAW S L. Nitrogen isotopic composition of coal-fired power plant NOx:Influence of emission controls and implications for global emission inventories[J]. Environmental Science & Technology, 2012, 46(6):3528-3535.
    [31] HASTINGS M G, SIGMAN D M, LIPSCHULTZ F. Isotopic evidence for source changes of nitrate in rain at Bermuda[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D24):1-12.
    [32] FANG Y T, KOBA K, WANG X M, et al. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China[J]. Atmospheric Chemistry & Physics Discussions, 2011, 10(9):1313-1325.
    [33] YUE F J, LIU C Q, LI S L, et al. Analysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast China[J]. Journal of Hydrology, 2014, 519:329-339.
    [34] XING M, LIU W, WANG Z, et al. Relationship of nitrate isotopic character to population density in the Loess Plateau of Northwest China[J]. Applied Geochemistry, 2013, 35(4):110-119.
    [35] 王坚, 赵丽娟, 郁建栓. 厦门空气中NO2、SO2来源及污染物传输研究[J]. 中国西部科技, 2014, 13(3):7-9.

    WANG J, ZHAO L J, YU J S. Study on NO2 and SO2 sources and pollutant transport in xiamen air[J]. Science and Technology of West China, 2014, 13(3):7-9(in Chinese).

    [36] 胡菲菲, 张良. 我国酸沉降地区硫源的硫同位素组成研究[J]. 地质学刊, 2013, 37(4):675-680.

    HU F F, ZHANG L. Study on sulfur isotopic composition of sulfur source in acid deposition regions in China[J]. Journal of Geology, 2013, 37(4):675-680(in Chinese).

    [37] 张鸿斌, 胡霭琴, 卢承祖, 等. 华南地区酸沉降的硫同位素组成及其环境意义[J]. 中国环境科学, 2002, 22(2):165-169.

    ZHANG H B, HU A Q, LU C Z, et al. Sulfur isotopic composition of acid deposition in South China Regions and its environmental significance[J]. China Environmental Science, 2002, 22(2):165-169(in Chinese).

    [38] 张鸿斌, 陈毓蔚, 刘德平. 广州地区酸雨硫源的硫同位素示踪研究[J]. 地球化学, 1995, 24(S1):126-133.

    ZHANG H B, CHEN Y W, LIU D P. Study on sulfur source of acid rain using sulfur isotopic trace[J]. Geochimica, 1995, 24(S1):126-133(in Chinese).

    [39] ZHANG M Y, WANG S J, MA G Q, et al. Sulfur isotopic composition and source identification of atmospheric environment in central Zhejiang, China. Science China Earth Sciences, 2010, 53(11):1717-1725.
    [40] WALTERS W W, MICHALSKI G. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy, molecules,·OH, and H2O and its implications for isotope variations in atmospheric nitrate[J]. Geochimica Et Cosmochimica Acta, 2016, 191:89-101.
  • 加载中
计量
  • 文章访问数:  1029
  • HTML全文浏览数:  1029
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-12-20

黄山景观区域氮、硫湿沉降来源与地球化学过程

    通讯作者: 江用彬, E-mail: yongbin_jiang@163.com
  • 1. 安徽工业大学环境科学与工程系, 马鞍山, 243002;
  • 2. 生物膜法水质净化及利用技术教育部工程研究中心, 马鞍山, 243002;
  • 3. 中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳, 550081;
  • 4. 黄山风景区管理委员会, 黄山, 242700
基金项目:

安徽省自然科学基金(1608085MD82)和国家自然科学基金(41203055)资助.

摘要: 黄山是世界著名的地质公园,近年来该地区酸雨频率增加,威胁着景区的地质生态环境.本研究通过长期降水化学观测与氮、氧、硫同位素地球化学分析,探讨黄山景区氮、硫湿沉降来源与地球化学过程,以期揭示酸雨成因.结果表明,研究期间酸雨频率为62.5%.SO42-和NO3-为主要致酸离子.[SO42-]/[NO3-]当量比均值为1.7,主要受早期氮排放和移动源递增贡献影响.氮、氧、硫同位素组成和分异数据表明,降水中SO42-和NO3-主要来源为移动源(燃油)释放,工业源(燃煤)贡献次之,降水硝酸、硫酸的形成主要为燃油燃烧及其氧化物氧化过程.Ca2+和NH4+为酸雨的主要中和因子.我国逐渐增加的移动源化石燃料排放已经对黄山景区大气环境产生显著影响.

English Abstract

参考文献 (40)

目录

/

返回文章
返回