土壤对三氯乙烯的吸附行为及其影响因素
Soil adsorption behavior of trichloroethylene and its influencing factors
-
摘要: 基于静态吸附实验对土壤吸附三氯乙烯的影响因素进行研究,通过利用有机质含量为0.96%的土样及经375℃、600℃、次氯酸钠和联合氧化方法(600℃+次氯酸钠)处理后的土样为吸附剂,考察了各种土样吸附TCE的吸附动力学和吸附热力学,以及土壤中有机质含量、软碳、硬碳、矿物质、TCE初始浓度和钙离子强度对吸附作用的影响.结果表明,土壤对TCE的吸附分为快速吸附、慢速吸附和平衡3个阶段,并在30 h左右达到吸附平衡,且吸附过程符合准二级动力学方程(R2>98%);Freundlich模型能较好地拟合TCE在土壤中的吸附等温曲线(R2>93%);土壤对TCE的吸附以物理吸附为主,其中吸附贡献主要为硬碳(>60%);TCE浓度的升高可以增加矿物质的吸附贡献率;离子强度的增加显著降低了土壤各组分对TCE的吸附.Abstract: Based on static adsorption experiment, the effect factors of trichloroethylene adsorbed by soil was studied, using of the organic matter content was 0.96% of the soil samples and 375℃, 600℃, sodium hypochlorite and joint oxidation method (600℃+sodium hypochlorite) treated soil samples as adsorbent. the various soil adsorption of TCE adsorption kinetics and adsorption thermodynamics, and soil organic matter content, soft carbon, hard carbon, minerals, initial concentration of TCE and ionic strength on the influence of adsorption were examined. The results showed that the soil adsorption of TCE was divided into three stages:fast adsorption, slow adsorption and equilibrium adsorption, and reached the adsorption equilibrium around 30 h, and the adsorption process was fitted with the pseudo-second-order kinetic equation (R2>98%).The Freundlich model can well fit the adsorption isothermal curve of TCE in soil (R2>93%).The adsorption of TCE by soil was mainly physical adsorption, and the adsorption contribution was mainly hard carbon (>60%).The increase of TCE concentration could increase the contribution rate of mineral adsorption. The increase of ion strength significantly reduced the adsorption of TCE by soil components.
-
Key words:
- trichloroethylene /
- adsorption /
- organic matter /
- minerals /
- soil
-
[1] GUYTON K Z, HOGAN K A, CHERYL S C, et al. Human Health Effects of Tetrachloroethylene:Key Findings and Scientific Issues[J]. Environmental Health Perspectives, 2014, 122(4):325-334. [2] WEBER W J J, HUANG W L. A distributed reactivity model for sorption by soils and sediments.4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions[J]. Environmental Science and Technology, 1996, 30(3):881-888. [3] JOSEPH J, PIGNATELLO, XING B S. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Enviromental Science Technology, 1996,30:1-11. [4] 何龙, 邱兆富, 吕树光, 等. 三氯乙烯在不同土壤中的吸附特性及其影响因素研究[J].环境科学, 2012, 33(11):3976-3982. HE L, QIU Z F, LU S G, et al. Adsorption characteristics of trichloroethylene in different soils and its influencing factors[J]. Environmental Science, 2012, 33(11):3976-3982(in Chinese).
[5] 张坤峰, 何江涛, 刘明亮, 等. 土壤有机质形态对有机污染物三氯乙烯(TCE)的吸附影响研究[J]. 安徽农业科学, 2010, 38(1):286-288. ZHANG K F, HE J T, LIU M L, et al. Study on the effect of soil organic matter morphology on the adsorption of organic pollutant trichloroethylene (TCE)[J]. Anhui Agricultural Science, 2010, 38(1):286-288(in Chinese).
[6] KAISER K, EUSTERHUES K, RUMPEL C, et al. Stabilization of organic matter by soil minerals investigations of density and particle-size fraction from two acid forest soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165:451-459. [7] LIU P,ZHU D Q, ZHANG H, et al. Sorption of polar and nonpolar aromatic compounds to four surface soils of eastern China[J]. Environmental Pollution, 2008, 156:1053-1060. [8] MIKUTTA R, KLEBER M, KAISER K, et al. Review[J]. Soil Science Society of America Journal, 2005, 69(1):120-135. [9] ELMQUIST M, CORNELISSEN G, KUKULSKA Z, et al. Distinct oxidative stabilities of char versus soot black carbon:Implications for quantification and environmental recalcitrance[J]. Global Biogeochemical Cycles, 2006, 20(2):1-11. [10] ACCARDI D A, GSCHWEND P M. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ[J]. Sci. Technol, 2002, 36:21-29. [11] REDDY C M, PEARSON A, XU L, et al. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples[J]. Environ Sci Technol, 2002, 36:1774-1782. [12] GUSTAFSSON O, BUCHELI T D, KUKULSKA Z, et al. Evaluation of a protocol for the quantification of black carbon in sediments[J]. Global Biogeochemical Cycles, 2001, 15(4):881-890. [13] 张坤峰, 何江涛, 刘明亮, 等. 土壤中有机碳含量对三氯乙烯的吸附影响实验[J]. 岩石矿物学杂志, 2009, 28(6):649-652. ZHANG K F, HE J T, LIU M L, et al. Experiment on the effect of organic carbon content in soil on the adsorption of trichloroethylene[J]. Journal of Petrology and Mineralogy, 2009, 28(6):649-652(in Chinese).
[14] HEO J H, LEE D H, KOH D C, et al. The effect of ionic strength and hardness of trichloro- ethylene contaminated synthetic groundwater on remediation using granular activated carbon[J]. Geosciences Journal, 2007, 11(3):229-239. [15] SCHWARZENBACH R P, GSCHWEND P M, IMBODEN D M. Environmental Organic Chemistry[M]. 2nd ed. NewYork:Wiley-Inter-Science, 2003. [16] 胡林, 邱兆富, 何龙, 等. 土壤组分对四氯乙烯吸附解吸行为的影响[J]. 环境科学. 2013,34(12):4635-4641. HU L, QIU Z F, HE L, et al. Effects of soil components on adsorption and desorption behavior of tetrachloroethylene[J]. Environmental Science, 2013, 34(12):4635-4641(in Chinese).
[17] GUSTAFSSON, BUCHELI T D, KUKULSKA Z, et al. Evaluation of a protocol for the quantification of black carbon in sediments[J]. Global Biogeochemical Cycles, 2001, 15(4):881-890. [18] [19] BROWN, ANGUS M. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet[J]. Computer Methods and Programs in Biomedicine, 2001, 65(3):191-200. [20] DENG Y H, WHEATLEY A. Mechanisms of phosphorus removal by recycled crushed concrete[J]. International Journal of Environmental Research and Public Health, 2018, 15(2):357-373. [21] 罗冰, 李荣飞, 吴学森, 等. 砂土和壤土中不同因子对三氯乙烯的吸附影响[J]. 广东农业科学, 2013, 40(14):167-169. LUO B, LI R F, WU X S, et al. Adsorption of trichloroethylene by different factors in sandy soil and loam[J].Guangdong Agricultural Science, 2013, 40(14):167-169(in Chinese).
[22] 张坤峰, 何江涛, 刘明亮, 等. 土壤中有机碳含量对三氯乙烯的吸附影响实验[J]. 岩石矿物学杂志, 2009, 28(6):649-652. ZHANG K F, HE J T, LIU M L, et al. Experiments on the effect of organic carbon content in soil on the adsorption of trichloroethylene[J]. Journal of Petrology and Mineralogy, 2009, 28(6):649-652(in Chinese).
[23] [24] TOSUN I. Ammonium removal from aqueous solutions by clinoptilolite determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models[J]. Int J Environ Res Public Health, 2012, 9:970-984. [25] CORNELISSEN G, GUSTAFSSON. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates[J]. Environ Sci Technol, 2004, 38:148-155. [26] PAN B, NING P, XING B S. Partiv sorption of hydrophobic organic contaminants[J]. Environmental Science and Pollution Research, 2008, 15(7):554-564. [27] HUANG W, YOUNG T M, SCHLAUTMAN M A, et al. A distributed reactivity model for sorption by soils and sediments:9. General isotherm nonlinearity and applicability of the dual reactive domain model[J]. Environmental Science and Technology, 1997, 31(6):1703-1710. [28] 王磊, 丁浩然, 陈樯, 等. 四氯乙烯和萘在氧化前后的含水层土壤上的吸附与加标解吸研究[J]. 土壤, 2015, 47(4):725-732. WANG L, DING H R, CHEN G, et al. Adsorption and desorption of tetrachloroethylene and naphthalene on aquifer soils before and after oxidation[J]. Soil, 2015, 47(4):725-732(in Chinese).
计量
- 文章访问数: 1812
- HTML全文浏览数: 1812
- PDF下载数: 58
- 施引文献: 0