蚯蚓-植物联合修复土壤重金属技术研究:回顾与展望

张园, 肖祖飞, 李刚, 冯菁, 史永松. 蚯蚓-植物联合修复土壤重金属技术研究:回顾与展望[J]. 环境化学, 2019, (11): 2510-2518. doi: 10.7524/j.issn.0254-6108.2018122202
引用本文: 张园, 肖祖飞, 李刚, 冯菁, 史永松. 蚯蚓-植物联合修复土壤重金属技术研究:回顾与展望[J]. 环境化学, 2019, (11): 2510-2518. doi: 10.7524/j.issn.0254-6108.2018122202
ZHANG Yuan, XIAO Zufei, LI Gang, FENG Jing, SHI Yongsong. Review and prospection of soil heavy metal remediation with combined earthworm-plant technology[J]. Environmental Chemistry, 2019, (11): 2510-2518. doi: 10.7524/j.issn.0254-6108.2018122202
Citation: ZHANG Yuan, XIAO Zufei, LI Gang, FENG Jing, SHI Yongsong. Review and prospection of soil heavy metal remediation with combined earthworm-plant technology[J]. Environmental Chemistry, 2019, (11): 2510-2518. doi: 10.7524/j.issn.0254-6108.2018122202

蚯蚓-植物联合修复土壤重金属技术研究:回顾与展望

    通讯作者: 张园, E-mail: yuanzhang_1001@mail.usts.edu.cn
  • 基金项目:

    国家自然科学基金(41701564),苏州市科技计划项目(SNG201613),江苏省高校自然科学基金(17KJB610010)和2017年江苏省研究生科研创新计划项目(SJCX17_0674)资助.

Review and prospection of soil heavy metal remediation with combined earthworm-plant technology

    Corresponding author: ZHANG Yuan, yuanzhang_1001@mail.usts.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41701564), Science and Technology Project in Suzhou(SNG201613),Natural Science Fund for Colleges and Universities in Jiangsu Province(17KJB610010)and Graduate Student Scientific Research Innovation Projects in Jiangsu Province(SJCX17_0674).
  • 摘要: 由于自然和人类活动而产生的重金属污染是目前国内外主要关注的热点问题之一.生态环境部和自然资源部联合发布了一份中国土壤污染现状报告,报告提出中国土壤重金属污染总体形势严峻.蚯蚓-植物联合修复的效果优于单一的植物修复和蚯蚓修复的效果.本文在大量收集文献资料的基础上,回顾了我国的超积累植物研究现状和蚯蚓在植物修复土壤重金属污染的作用.对蚯蚓-植物联合修复优缺点进行归纳,展望了蚯蚓-植物联合修复应用的广阔前景,为蚯蚓-植物联合修复的应用提供参考.针对蚯蚓-植物联合修复技术的应用,指出了今后研究的重点与方向.
  • 加载中
  • [1] ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2):750-759.
    [2] 环境保护部,国土资源部. 全国土壤污染状况调查公报[R].北京:环境保护部,国土资源部,2014. Ministry of Environmental Protection, Ministry of land and resources. Report on the national general survey of soil contamination[R].Beijing:Ministry of Environmental Protection, Ministry of Land and Resources, 2014(in Chinese).
    [3] RAGHUNATH R, TRIPATHI R M, KUMAR A V, et al. Assessment of Pb, Cd, Cu, and Zn exposures of 6- to 10-year-old children in Mumbai[J]. Environmental Research, 1999, 80(3):215-221.
    [4] NIU L, YANG F, XU C, et al. Status of metal accumulation in farmland soils across China:From distribution to risk assessment[J]. Environmental Pollution, 2013, 176(5):55-62.
    [5] WALL D H, NIELSEN U N, SIX J. Soil biodiversity and human health[J]. Nature, 2015, 528(7580):69-76.
    [6] LUBBERS I M, GROENIGEN K J V, FONTE S J, et al. Greenhouse-gas emissions from soils increased by earthworms[J]. Nature Climate Change, 2013, 3(3):187-194.
    [7] BROWN G G, BAROIS I, LAVELLE P. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains[J]. European Journal of Soil Biology, 2000, 36(3):177-198.
    [8] NAHMANI J, LAVELLE P. Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France[J]. European Journal of Soil Biology, 2002, 38(3):297-300.
    [9] JAFFRÉ T, BROOKS R R, LEE J, et al. Sebertia acuminata:A hyperaccumulator of nickel from New Caledonia[J]. Science, 1976, 193(4253):579-580.
    [10] VAN DER ENT A, CALLAHAN D L, NOLLER B N, et al. Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia)[J]. Scientific Reports, 2017, 7(41861):1-21.
    [11] 周健民. 土壤学大辞典[M].北京:科学出版社,2013. ZHOU J M. Soil science dictionary[M]. Beijing:Science Press,2013(in Chinese).
    [12] 蔡利娟,范仲学,全先庆,等. 镉超积累植物及植物镉积累特性转基因改良研究进展[J]. 广西植物,2009,29(5):658-663.

    CAI L J, FAN Z X, QUAN X Q, et al. Advances on screening of Cd-hyperaccumulators and transgenic improvement of plant in Cd-accumulation[J]. GUIHAIA, 2009,29(5):658-663(in Chinese).

    [13] LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China:A synthesis of the current state of knowledge[J]. Environmental Science & Technology, 2018, 52(21):11980-11994.
    [14] WANG H B, WONG M H, LAN C Y, et al. Uptake and accumulation of arsenic by 11Pteris taxa from southern China[J]. Environmental Pollution, 2007, 145(1):225-233.
    [15] 陈同斌,韦朝阳. 砷超富集植物是蜈蚣草及其对砷的富集特征[J]. 科学通报,2002,47(3):207-210.

    CHEN T B, WEI Z Y. The characteristics of arsenic hyperaccumulator in Clematis sativa l[J]. Chinese Science Bulletin, 2002, 47(3):207(in Chinese).

    [16] 杨肖娥,龙新宪,倪吾钟,等. 东南景天(Sedum alfredii H)——一种新的锌超积累植物[J]. 科学通报,2002,47(13):1003-1006.

    YANG X E, LONG X X, NI W Z, et al. Sedum alf redii H:A new Zn hyperaccumulating plant[J]. Chinese Science Bulletin, 2002, 47(13):1003-1006(in Chinese).

    [17] 魏树和,周启星,王新,等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J]. 科学通报,2004,49(24):2568-2573.

    WEI S H, ZHOU Q X, WANG, et al. Solanum nigrum L:A new Cd hyperaccumulating plant[J]. Chinese Science Bulletin, 2004, 47(24):2568-2573(in Chinese).

    [18] 汤叶涛,仇荣亮,曾晓雯,等. 一种新的多金属超富集植物——圆锥南芥(Arabis paniculata L)[J]. 中山大学学报:自然科学版,2005,44(4):135-136.

    TANG Y T, QIU R L, ZENG X W, et al. A new found Pb/Zn/Cd hyperaccumulator-Arabis paniculata L[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(4):135-136(in Chinese).

    [19] TANG Y T, QIU R L, ZENG R R. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch[J]. Environmental & Experimental Botany, 2009, 66(1):126-134.
    [20] 薛生国,陈英旭,林琦,等. 中国首次发现的锰超积累植物——商陆[J]. 生态学报,2003,23(5):99-101.

    XUE G S, CHEN Y X, LIN Q, et al. Phytolacca acinosa Roxb. (Phytolaccaceae):A new manganese hyperaccumulator plant from Southern China[J]. Acta Ecologica Sinica, 2003, 23(5):99-101(in Chinese).

    [21] LIU X, PENG K, WANG A, et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9):1136-1141.
    [22] YETAO T, RONGLIANG Q, XIAOWEN Z, et al. Zn and Cd hyperaccumulating characteristics of Picris divaricata Vant[J]. International Journal of Environment and Pollution, 2009, 38(3-4):150-156.
    [23] 胡鹏杰,周小勇,仇荣亮,等. Zn超富集植物长柔毛委陵菜对Cd的耐性与富集特征[J]. 农业环境科学学报,2007,26(6):2221-2224.

    HU P J, ZHOU X Y, QIU R L, et al. Cadmium toleranceand accumulation features of Zn-hyperaccmulator Potentilla griffithii var. velutina[J]. Journal of Agro-Environment Science, 2007, 26(6):2221-2224(in Chinese).

    [24] HU P, WANG Y, PRZYBYŁOWICZ W J, et al. Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally[J]. Plant & Soil, 2015, 388(1-2):267-282.
    [25] SI-LIANG L I, NA L I, LI-SHENG X U, et al. Characters of Zn and Cd accumulation and distribution in leaves of Sedum plumbizincicola at different ages[J]. Soils, 2010, 42(3):446-452.
    [26] ZHANG S, LIN H, DENG L, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L[J]. Ecological Engineering, 2013, 51(2):133-139.
    [27] 刘威,束文圣,蓝崇钰. 宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J]. 科学通报,2003,48(19):44-47.

    LIU W, SHU S W, LAN C Y. Viola baoshanensis:A new Cd hyperaccumulating plant[J]. Chinese Science Bulletin, 2003, 48(19):44-47(in Chinese).

    [28] HOU X. Two lead-hyperaccumulator:Pogonatherum crinitum and Lsache globosa[J]. Chinese Journal of Environmental Engineering, 2012, 6(3):989-994.
    [29] JIE L, SHANG W, ZHANG X, et al. Mn accumulation and tolerance in Celosia argentea Linn.:A new Mn-hyperaccumulating plant species[J]. Journal of Hazardous Materials, 2014, 267(1):136-141.
    [30] LIU K, YU F, CHEN M, et al. A newly found manganese hyperaccumulator-Polygonum lapathifolium Linn[J]. International Journal of Phytoremediation, 2016, 18(4):348-353.
    [31] 邓华,李明顺,陈英旭. 超富集植物短毛蓼对锰的富集特征[J]. 生态学报,2009,29(10):5450-5454.

    DENG H, LI M S, CHEN Y X. A ccumulating characteristics of manganese by Polygonum pubescens Blume[J]. Acta Ecologica Sinica, 2009, 29(10):5450-5454(in Chinese).

    [32] 杨胜香,李明顺,李艺,等. 广西平乐锰矿区土壤、植物重金属污染状况与生态恢复研究[J]. 矿业安全与环保,2006,33(1):27-29.

    YANG S X, LI M S, LI Y, et al. Study on heavy metal pollution in soil and plants in Pingle Manganese Mine, Guangxi and implications for ecological restoration[J] Mining Safe Envrionment Protect, 2006, 30(1):27-29(in Chinese).

    [33] 薛云. 单叶新月蕨和三叶新月蕨富集稀土元素的能力及稀土结合多肽结构的探讨[D].厦门:厦门大学,2008. XUE Y. Hyperaccimilation ability of Pronephrium simplex to rare earth elements and corresponding REE binding peptides[D]. Xiamen:Xiamen University, 2008(in Chinese).
    [34] WENJIE L, TANGFU X, YUNYING W, et al. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils[J]. Chemosphere, 2012, 86(8):837-842.
    [35] 束文圣,杨开颜,等. 湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J]. 应用与环境生物学报,2001,7(1):7-12.

    SHU W S, YANG K Y, et al. Flora and heavy metals in dominant plants growing on an ancient copper spoil heap on tonglushan in Hubei province, China[J]. Chin. J. Appl. Environ. Biol., 2001, 7(1):7-12(in Chinese).

    [36] 唐世荣. 超积累植物[J]. 农业资源与环境学报,1996,3:14-18. TANG S R. Hyperaccumulator[J]. Journal of Agricultural Resources and Environment, 1996

    , 3:14-18(in Chinese).

    [37] DENG L, LI Z, WANG J, et al. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies[J]. Int J Phytoremediation, 2016, 18(2):134-140.
    [38] 廖晓勇,陈同斌,谢华,等. 磷肥对砷污染土壤的植物修复效率的影响:田间实例研究[J]. 环境科学学报, 2004, 24(3):455-462.

    LIAO X Y, CHEN T B, XIE H, et al. Effect of application of P fertilizer on efficiency of As removal from As-contaminated soil using phytoremediation:Field study[J].Acta Scientiae Circumsta Ntiae, 2004, 24(3):455-462(in Chinese).

    [39] 刘玲,吴龙华,李娜,等. 种植密度对镉锌污染土壤伴矿景天植物修复效率的影响[J]. 环境科学,2009,30(11):3422-3426.

    LIU L, WU L H, LI N, et al. Effect of planting densities on yields and zinc and cadmium uptake by Sedum plumbizincicola[J]. Environment Science,2009, 30(11):3422-3426(in Chinese).

    [40] 周建利,邵乐,朱凰榕,等. 间套种及化学强化修复重金属污染酸性土壤——长期田间试验[J]. 土壤学报,2014,5:1056-1065. ZHOU J L, SHAO L, ZHU H R, et al. Phytoremediation of inter-cropping with chemical enhancement of heavy-metal-contaminated acid soil:A long-term field experiment[J]. Acta Pedologica Sinica, 2014

    , 5:1056-1065(in Chinese).

    [41] USMANI Z. Role of earthworms against metal contamination:A review[J]. Journal of Biodiversity & Environmental Sciences, 2015, 6(1):414-427.
    [42] SUTHAR S, SINGH S, DHAWAN S. Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils:Is metal bioaccumulation affected by their ecological category?[J]. Ecological Engineering, 2008, 32(2):99-107.
    [43] 王学锋,曹静. 蚯蚓在植物修复重金属污染土壤中的应用前景[J]. 安徽农业科学,2008,36(17):7415-7416.

    WANG X F, CAO J. Application prospect of earthworms in phytoremediation of heavy metal contaminated soil[J]. Journal of Anhui Agri Sci,2008, 36(17):7415-7416(in Chinese).

    [44] WANG K, QIAO Y, ZHANG H, et al. Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China[J]. Ecotoxicology & Environmental Safety, 2018, 148:876-883.
    [45] 张友梅,郭永灿. 土壤污染对蚯蚓的影响[J]. 湖南师范大学自然科学学报,1996,19(3):84-90.

    ZHANG Y M, GUO Y C. On effects of earthworm by soil pollution[J]. Acta Sci Nat Univ Norm Hunan,1996, 19(3):84-90(in Chinese).

    [46] LEITA L, NOBILI M D. Water-soluble fractions of heavy metals during composting of municipal solid waste[J]. Journal of Environmental Quality, 1991, 20(1):73-78.
    [47] 章瑞,章红兵,叶利民. 菌菇渣与蚯蚓联合处理对猪粪中铜锌含量的影响[J]. 今日畜牧兽医,2018,34(12):11-12.
    [48] BALDOCK J A, MCNEILL A, UNKOVICH M, et al. Nutrient cycling in terrestrial ecosystems[M]. Berlin:Springer, 2007.
    [49] WARDLE D A. The influence of biotic interactions on soil biodiversity[J]. Ecology letters, 2006, 9(7):870-886.
    [50] DEVLIEGHER W, VERSTRAETE W. Lumbricus terrestris in a soil core experiment:Effects of nutrient-enrichment processes (NEP) and gut-associated processes (GAP) on the availability of plant nutrients and heavy metals[J]. Soil Biology & Biochemistry, 1996, 28(4-5):489-496.
    [51] 冯雯. 蚯蚓对农田土壤微生物和微动物群落结构和功能的影响[D].南京:南京农业大学,2014. FENG W. Effects of earthworm acrivities on soil microbial and micro-fauna composition and function in agro-ecosystem[D].Nanjing:Nanjing Agricultural University, 2014(in Chinese).
    [52]
    [53] EDWARDS C A, EDWARDS C A. Earthworm ecology[J]. Earthworm Ecology, 2004, 1:312-312.
    [54] MUSCOLO A, BOVALO F, GIONFRIDDO F, et al. Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism[J]. Soil Biology & Biochemistry, 1999, 31(9):1303-1311.
    [55] ATIYEH R M, SUBLER S, EDWARDS C A, et al. Effects of vermicomposts and composts on plant growth in horticultural container media and soil[J]. Pedobiologia, 2000, 44(5):579-590.
    [56] SENESI N, SAIZJIMINEZ C, MIANO T M. Spectroscopic characterization of metal-humic acid-like complexes of earthworm-composted organic wastes[J]. 1992, 117-118():111-120.
    [57] GARCIA C, CECCANTI B, MASCIANDARO G, et al. Phosphatase and β-glucosidase activities in humic substances from animal wastes[J]. Bioresource Technology, 1995, 53(1):79-87.
    [58] MASCIANDARO G, CECCANTI B, GARCIA C. Soil agro-ecological management:Fertirrigation and vermicompost treatments[J]. Bioresource Technology, 1997, 59(2-3):199-206.
    [59] ELVIRA C, SAMPEDRO L, BEN TEZ E, et al. Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei:A pilot-scale study[J]. Bioresource Technology, 1998, 63(3):205-211.
    [60] 王丹丹, 李辉信, 魏正贵, 等. 蚯蚓对污染土壤中黑麦草和印度芥菜吸收累积锌的影响[J]. 土壤,2008,40(1):73-77.

    WANG D D, LI H X, WEI Z G, et al. Effects of earthworm on Zn concentration and total-Zn uptake of Ryegrass and Indian Mustard in Zn polluted soil[J]. Soil, 2008, 40(1):73-77(in Chinese).

    [61] 罗艳丽,朱新萍,郑春霞,等. 蚯蚓对黑麦草在土壤体系中镉迁移影响的研究[J]. 新疆农业科学,2011,48(7):1269-1272.

    LUO Y L, ZHU X L, ZHENG C X, et al. Effects of earthworm on Cd and its accumlation of Ryegrass in soil[J]. Xinjiang Agricultural Sciences, 2011, 48(7):1269-1272(in Chinese).

    [62] WU D, FENG J, CHU S, et al. Integrated application of sewage sludge, earthworms and Jatropha curcas on abandoned rare-earth mine land soil[J]. Chemosphere, 2019, 214:47-54.
    [63] WU C, ZHANG X, YANG D. Review in strengthening technology for phytoremediation of soil contaminated by heavy metals[J]. Environmental Science & Technology, 2012, 78(1):12-15.
    [64] NANNONI F, ROSSI S, PROTANO G. Soil properties and metal accumulation by earthworms in the Siena urban area (Italy)[J]. Applied Soil Ecology, 2014, 77(5):9-17.
    [65] WANG D, LI H, WEI Z, et al. Effect of earthworms on the phytoremediation of zinc-polluted soil by ryegrass and Indian mustard[J]. Biology & Fertility of Soils, 2006, 43(1):120-123.
    [66] 周明亮,戴万宏,曹玉红. 蚯蚓对土壤中重金属化学行为及生物有效性影响的研究进展[J]. 中国农学通报,2014,30(20):154-160.

    ZHOU M L, DAI W H, CAO Y H. A review of research on chemical behavior and bioavailability of heavy metals in soil caused by earthworms[J]. Chinese Agricultural Science Bulletin, 2014, 30(20):154-160(in Chinese).

    [67] SIZMUR T, HODSON M E. Do earthworms impact metal mobility and availability in soil——A review[J]. Environmental Pollution, 2009, 157(7):1981-1989.
    [68] 俞协治,成杰民. 蚯蚓对土壤中铜、镉生物有效性的影响[J]. 生态学报,2003,23(5):86-92.

    YU X Z, CHENG J M. Effect of earthworm on bio-availability[J]. Acta Ecologica Sinica, 2003, 23(5):86-92(in Chinese).

    [69] 成杰民,俞协治. 蚯蚓在植物修复铜、镉污染土壤中的作用[J]. 应用与环境生物学报,2006,12(3):352-355.

    CHENG J M, YU X Z. Roles of earthworm in phytoremediation of copper and cadmium contaminated soil[J]. Chin J Appl Environ Biol, 2006, 12(3):352-355(in Chinese).

    [70] 敬佩,李光德,刘坤,等. 蚯蚓诱导对土壤中铅镉形态的影响[J]. 水土保持学报,2009, 23(3):65-68.

    JING P, LI G D, LIU K, et al. Effect of earthworm on Bio-availability of Pb and Cd in Soil[J]. Journal of Soil and Water Conservation, 2009, 23(3):65-68(in Chinese).

    [71] HAIT S, TARE V. Transformation and availability of nutrients and heavy metals during integrated composting-vermicomposting of sewage sludges[J]. Ecotoxicology & Environmental Safety, 2012, 79(4):214-224.
    [72] 成杰民, 俞协治, 黄铭洪. 蚯蚓-菌根相互作用对土壤-植物系统中Cd迁移转化的影响[J]. 环境科学学报, 2007, 27(2):228-234.

    CHENG J M, YU X Z, HUANG M H. Effect of earthworm-mycorrhiza interaction on transformation of Cd from soil to plant[J]. Acta Scientiae of Circumstantiae, 2007, 27(2):228-234(in Chinese).

    [73] HARMSEN J. Measuring bioavailability:From a scientific approach to standard methods[J]. J Environ Qual, 2007, 36(5):1420-1428.
    [74] CHEN Q, AN X, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92-93:1-10.
  • 加载中
计量
  • 文章访问数:  2032
  • HTML全文浏览数:  2032
  • PDF下载数:  96
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-12-22

蚯蚓-植物联合修复土壤重金属技术研究:回顾与展望

    通讯作者: 张园, E-mail: yuanzhang_1001@mail.usts.edu.cn
  • 1. 苏州科技大学环境科学与工程学院, 苏州, 215009;
  • 2. 中国科学院城市环境研究所城市, 厦门, 361021;
  • 3. 苏州市相城区环境保护局, 苏州, 215100;
  • 4. 苏州市环境科学研究所, 苏州, 215107
基金项目:

国家自然科学基金(41701564),苏州市科技计划项目(SNG201613),江苏省高校自然科学基金(17KJB610010)和2017年江苏省研究生科研创新计划项目(SJCX17_0674)资助.

摘要: 由于自然和人类活动而产生的重金属污染是目前国内外主要关注的热点问题之一.生态环境部和自然资源部联合发布了一份中国土壤污染现状报告,报告提出中国土壤重金属污染总体形势严峻.蚯蚓-植物联合修复的效果优于单一的植物修复和蚯蚓修复的效果.本文在大量收集文献资料的基础上,回顾了我国的超积累植物研究现状和蚯蚓在植物修复土壤重金属污染的作用.对蚯蚓-植物联合修复优缺点进行归纳,展望了蚯蚓-植物联合修复应用的广阔前景,为蚯蚓-植物联合修复的应用提供参考.针对蚯蚓-植物联合修复技术的应用,指出了今后研究的重点与方向.

English Abstract

参考文献 (74)

目录

/

返回文章
返回