微宇宙尺度下硫双二氯酚在锦鲤、泥鳅和沉积物中的富集和代谢特性

陈笛, 唐玉露, 干志伟, 苏仕军, 丁桑岚. 微宇宙尺度下硫双二氯酚在锦鲤、泥鳅和沉积物中的富集和代谢特性[J]. 环境化学, 2019, (11): 2519-2525. doi: 10.7524/j.issn.0254-6108.2018121007
引用本文: 陈笛, 唐玉露, 干志伟, 苏仕军, 丁桑岚. 微宇宙尺度下硫双二氯酚在锦鲤、泥鳅和沉积物中的富集和代谢特性[J]. 环境化学, 2019, (11): 2519-2525. doi: 10.7524/j.issn.0254-6108.2018121007
CHEN Di, TANG Yulu, GAN Zhiwei, SU Shijun, DING Sanglan. Bioconcentration and biological metabolism characteristics of bithionol in koi, loach, and sediment at microcosmic scale[J]. Environmental Chemistry, 2019, (11): 2519-2525. doi: 10.7524/j.issn.0254-6108.2018121007
Citation: CHEN Di, TANG Yulu, GAN Zhiwei, SU Shijun, DING Sanglan. Bioconcentration and biological metabolism characteristics of bithionol in koi, loach, and sediment at microcosmic scale[J]. Environmental Chemistry, 2019, (11): 2519-2525. doi: 10.7524/j.issn.0254-6108.2018121007

微宇宙尺度下硫双二氯酚在锦鲤、泥鳅和沉积物中的富集和代谢特性

    通讯作者: 干志伟, E-mail: ganzhiwei.nk@gmail.com
  • 基金项目:

    国家自然科学基金(21607108)资助.

Bioconcentration and biological metabolism characteristics of bithionol in koi, loach, and sediment at microcosmic scale

    Corresponding author: GAN Zhiwei, ganzhiwei.nk@gmail.com
  • Fund Project: Supported by the National Nature Science Foundation of China(21607108).
  • 摘要: 在微宇宙尺度下探究上覆水生物锦鲤、底栖生物泥鳅不同器官对硫双二氯酚的富集和代谢特性.实验结果表明,锦鲤可通过水相富集硫双二氯酚,在鱼肉、鱼鳃和内脏中浓度顺序为内脏 > 鱼肉 > 鱼鳃,脂重标化动力学生物富集系数BCFkl分别为内脏623,鱼肉228和鱼鳃116;代谢速率顺序为内脏 > 鱼鳃 > 鱼肉,对应的净化半衰期分别为内脏19.3 d,鱼鳃33 d和鱼肉38.5 d,且生物扰动会增加锦鲤对硫双二氯酚的富集.锦鲤和泥鳅水相富集硫双二氯酚的浓度没有显著性差异,说明上覆水生物锦鲤与底栖生物泥鳅富集硫双二氯酚的能力相似.在泥鳅的鱼籽中检测出硫双二氯酚,说明硫双二氯酚有可能残留在泥鳅的受精卵中.
  • 加载中
  • [1] 薛飞群. 抗寄生虫药物的研究进展[J]. 北方牧业, 2010, 23:26. XUE F Q. Research progress of antiparasitic drug[J]. Northern Animal Husbandry, 2010, 23

    :26(in Chinese).

    [2] BOTTONI P, CAROLI S, CARACCIOLO A. B. Pharmaceuticals as priority water contaminants[J]. Toxicology Environmental Chemistry, 2010, 92:549-565.
    [3] HORVAT A J M,BABIC'D M, et al. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment[J]. Trac-trends in Analytical Chemistry, 2012, 31:61-87.
    [4] ZMCIC M, GROS M, BABIC S, et al. Analysis of anthelmintics in surface water by ultra high performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry[J]. Chemosphere, 2009, 99:224-232.
    [5] YOSHIMURA H, ENDOH Y S. Acute toxicity to freshwater organisms of antiparasitic drugs for veterinary use[J]. Environmental Toxicology, 2005, 20:60-66.
    [6] KOLAR L, ERZEN N K, HOGERWERF L. Toxicity of abamectin and doramectin to soil invertebrates[J]. Environmental Pollution, 2008, 151:182-189.
    [7] ČIZMIĆ M,BABIĆ S,KAŠTELAN-MACAN M. Multi-class determination of pharmaceuticals in wastewaters by solid-phase extraction and liquid chromatography tandem mass spectrometry with matrix effect study[J]. Environmental Science and Pollution Research, 2017, 24(25):20521-20539.
    [8] FEMANDEZ C, ANGEL P M, ALONSO A. Semifield assessment of the runoff potential and environmental risk of the parasiticide drug ivermectin under Mediterranean conditions[J]. Environmental Science and Pollution Research, 2011, 18(7):1194-1201.
    [9] 姜隽. 疏水性有机物在生物富集中对有机物的吸附[J]. 山西科技, 2016, 31(6):62-65.

    JIANG J. Adsorption of hydrophobic organics on organics[J]. Shanxi Science and Technology, 2016, 31(6):62-65(in Chinese).

    [10] SAKAMOTO M, TAKEBA, SASAMOTO T, et al. Determination of bithionol, bromophen, nitroxynil, oxyclozanide, and tribromsalan in milk with liquid chromatography coupled with tandem mass spectrometry[J]. J.AOAC Int, 2010, 93:1340-1346.
    [11] ZHENG W, PARK J A, ZHANG D, et al. Determination of fenobucarb residues in animal and aquatic food products using liquid chromatography-tandem mass spectrometry coupled with a QuEChERS extraction method[J]. Journal of Chromatography B, 2017, 1058:1-7.
    [12] 于瑞莲,林承奇,林喜燕,等.3种典型有机氯农药对锦鲤幼鱼的雌激素效应及其体内富集[J]. 生态毒理学报,2016,11(2):374-379.

    YU R L, LIN C Q, LIN X Y, et al. Estrogen effect of three typical organochlorine pesticides on brocade carp larvae and their enrichment in vivo[J]. Journal of Ecotoxicology, 2016, 11(2):374-379(in Chinese).

    [13] 吕雪飞, 邓玉林, 周群芳. 镉在雄性泥鳅体内的富集分布[J]. 化学通报, 2010, 73(10):932-937.

    LU X F, DENG Y L, ZHOU Q F. Enrichment and distribution of cadmium in male loach[J]. Chemical Bulletin, 2010, 73(10):932-937(in Chinese).

    [14] MAGALHAES V F, SOARES R M, AZCVEDO S M F. Microcystin contamination in fish from the Jacarepagua Lagon (Rio de Janeiro Broil):Ecological implication and human health risk[J]. Toxicon, 2001, 39(7):1077-1085.
    [15] RUI H, CAO L, GAO X Z, et al. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing[J]. China. Environmental Pollution, 2017, 229:548-556.
    [16] VANDEN H, FORBIS A D, HALLEY B A, et al. Bioconcentration and depuration of avermectin B-1a in the bluegill sunfish. Environ[J]. Toxicology Chemistry, 1997, 15(12):2263-2266.
    [17] CHEN H, LIU S, XU X R, et al. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area[J]. Journal of Hazardous Materials, 2017, 343:140-148.
    [18] SCHUURNANN G, EBERT R U, NENDZA M, et al. Predicting fate-related physicochemical properties. Risk assessment of chemicals:An Introduction (2nd edition)[M]. Netherlands:Springer,2007.
    [19] WU J P, LUO X J, ZHANG Y, et al. Residues of polybrominated diphenyl ethers in frogs (Rana limnocharis) from a contaminated site, South China:tissue distribution, biomagnification, and maternal transfer[J]. Environmental Science Technology, 2009, 43:5212-5217.
    [20] PITT J A, KOZALl J S, JAYASUNDARA N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 194:185-194.
    [21] ZUREK R. Effects of suspended materials on zooplankton.2. Laboratory investigations of Daphnia hyalina leydig[J]. Hydrobiology, 1983, 24(3):233-251.
    [22] HERBRANDSON C, BRADBURY S P, SWACKHAMER D L. Influence of suspended solids on acute toxicity of carbofuran to Daphnia magna:Ⅱ. An evaluation of potential interactive mechanisms[J]. Aquatic Toxicology, 2003, 63(4):343-355.
    [23] AKKANEN J, KUKKONEN J. Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter[J]. Environmental Toxicology and Chemistry, 2003, 22(3):518-524.
    [24] THOMAS L, TER L, MARTIN A, et a1. Dissolved organic matter enhances transport of PAHs to aquatic organisms[J]. Environmental Sciences and Technology, 2009,43(19):7212-7217.
    [25] TIAN S Y, ZHU L Y, BIAN J N, et al. Bioaccumulation and metabolism of polybrominated diphenyl ethers in carp (Cyprinus carpio) in a water/sediment microcosm:Important role of particulate matter exposure[J]. Environmental Sciences and Technology, 2012, 46:2951-2958.
    [26] TIAN S Y, ZHU L Y, LIU M. Bioaccumulation and distribution of polybrominated diphenyl ethers in marine species from Bohai Bay, China[J]. Environmental Toxicology Chemistry, 2010, 29(10):2278-2285.
    [27] GRANBERG M E, GUNNARSSON J S, HEDMAN J E, et al. Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Mareazelleria neglecta[J]. Environmental Sciences and Technology, 2008, 42(4):1058-1065.
    [28] MENONE M L, MIGLIORANZA K S B, IRIBARN E O, et al. The role of burrowing bed and burrows of the SW Atlantic intertidal crab Chasmagnathus granulate in trapping organochlofine pesticides[J]. Marine Pollution Bulletin, 2004, 48(3):240-247.
    [29] HERBRANDSON C, BRADBURY S P, SWACKHAMER D L. Influence of suspended solids on acute toxicity of carb of uran to Daphnia magna:Ⅰ. Interactive effects[J]. Aquatic Toxicology, 2003:63(4):333-334.
  • 加载中
计量
  • 文章访问数:  1371
  • HTML全文浏览数:  1371
  • PDF下载数:  28
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-12-10

微宇宙尺度下硫双二氯酚在锦鲤、泥鳅和沉积物中的富集和代谢特性

    通讯作者: 干志伟, E-mail: ganzhiwei.nk@gmail.com
  • 四川大学建筑与环境学院, 成都, 610065
基金项目:

国家自然科学基金(21607108)资助.

摘要: 在微宇宙尺度下探究上覆水生物锦鲤、底栖生物泥鳅不同器官对硫双二氯酚的富集和代谢特性.实验结果表明,锦鲤可通过水相富集硫双二氯酚,在鱼肉、鱼鳃和内脏中浓度顺序为内脏 > 鱼肉 > 鱼鳃,脂重标化动力学生物富集系数BCFkl分别为内脏623,鱼肉228和鱼鳃116;代谢速率顺序为内脏 > 鱼鳃 > 鱼肉,对应的净化半衰期分别为内脏19.3 d,鱼鳃33 d和鱼肉38.5 d,且生物扰动会增加锦鲤对硫双二氯酚的富集.锦鲤和泥鳅水相富集硫双二氯酚的浓度没有显著性差异,说明上覆水生物锦鲤与底栖生物泥鳅富集硫双二氯酚的能力相似.在泥鳅的鱼籽中检测出硫双二氯酚,说明硫双二氯酚有可能残留在泥鳅的受精卵中.

English Abstract

参考文献 (29)

目录

/

返回文章
返回