BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水

郑乐媚, 关亦玮, 文定, 唐叶如, 李旭辉, 令玉林, 周建红. BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水[J]. 环境化学, 2020, (8): 2137-2146. doi: 10.7524/j.issn.0254-6108.2019070906
引用本文: 郑乐媚, 关亦玮, 文定, 唐叶如, 李旭辉, 令玉林, 周建红. BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水[J]. 环境化学, 2020, (8): 2137-2146. doi: 10.7524/j.issn.0254-6108.2019070906
ZHENG Lemei, GUAN Yiwei, WEN Ding, TANG Yeru, LI Xuhui, LIN Yuling, ZHOU Jianhong. Preparation of BiOBr/GO composition nanocatalysts and application of degradation of ciprofloxacin wastewater in visible light[J]. Environmental Chemistry, 2020, (8): 2137-2146. doi: 10.7524/j.issn.0254-6108.2019070906
Citation: ZHENG Lemei, GUAN Yiwei, WEN Ding, TANG Yeru, LI Xuhui, LIN Yuling, ZHOU Jianhong. Preparation of BiOBr/GO composition nanocatalysts and application of degradation of ciprofloxacin wastewater in visible light[J]. Environmental Chemistry, 2020, (8): 2137-2146. doi: 10.7524/j.issn.0254-6108.2019070906

BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水

    通讯作者: 周建红, E-mail: jianhongzhou@163.com
  • 基金项目:

    湖南省大学生研究性学习和创新性实验计划项目(湘教通[2018]255号-521),湖南省教育厅2018年普通高校教学改革研究项目(G21816,湘教通[2018]436号-372:新工科背景下《生化反应工程》研讨式教学改革与探索)和湖南科技大学大学生研究性学习和创新性实验计划项目(201810534049)资助.

Preparation of BiOBr/GO composition nanocatalysts and application of degradation of ciprofloxacin wastewater in visible light

    Corresponding author: ZHOU Jianhong, jianhongzhou@163.com
  • Fund Project: Supported by Hunan University Students Research Learning and Innovative Experimental Project, (Xiangjiaotong[2018] no.255-521)
  • 摘要: 通过改进的Hummers法制备氧化石墨烯(GO)、水热法制得BiOBr,再由GO与BiOBr制备出新型的可见光复合纳米光催化剂BiOBr/GO,并用扫描电子显微镜(SEM)和X-射线衍射(XRD)进行了表征分析.用BiOBr/GO来催化降解环丙沙星溶液,得出最佳的GO与BiOBr的复合配比.探究了环丙沙星溶液的浓度、催化剂的投加量、废水pH值、照射光的波长以及光照强度5个因素对BiOBr/GO的光催化降解性能的影响并研究了催化降解环丙沙星的动力学,最后通过自由基捕获实验探究了BiOBr/GO光催化降解抗生素的机理.实验结果表明,相比于纯的BiOBr,BiOBr/GO有更好的可见光催化性能,其催化降解环丙沙星在浓度较低时符合拟一级动力学,在浓度较高时符合拟二级反应动力学;在优化条件下,即环丙沙星的初始浓度为20 mg·L-1、BiOBr/GO的投加量120 mg、溶液的pH值9.02、照射光的波长400 nm以及光照强度10.1 mW·cm-2时,BiOBr/GO在可见光下,对环丙沙星的去除率达到85%,自由基捕获实验得出·O2-在BiOBr/GO光催化降解中占主导地位.研究结果表明复合材料BiOBr/GO可以在可见光下很好地降解环丙沙星,有望在实际应用中降解抗生素废水.
  • 加载中
  • [1] 郝迪.抗生素在水环境中的生态效应及危害防御[J].现代农村科技, 2019(4):101. HAO D.The ecological effect of antibiotics in water environment and its harm prevention[J].Modern Rural Science and Technology,2019(4

    ):101(in Chinese).

    [2] YUN J Y, FEI F X, MING C, et al. Adsorption behavior of methylene blue on carbon nanotubes[J]. Bioresource Technology,2009,101(9):792-799.
    [3] 吴志斌, 基于石墨烯材料吸附/光催化去除水体中有机污染物的应用及机理研究[D].长沙:湖南大学,2017. WU Z B.Application and mechanism of adsorption/photocatalytic removal of organic pollutants in water based on graphene materials[D].Changsha:Hunan University,2017(in Chinese).
    [4] BARAN W, ADAMEK E, JAJKO M, et al. Removal of veterinary antibiotics from wastewater by electrocoagulation[J]. Chemosphere,2017, 194(194):381-389.
    [5] LI D, SHI W D.Recent developments in visible-light photocatalytic degradation of antibiotic[J]. Chinese Journal of Catalysis,2016,37(6):792-799.
    [6] 万建新, 任学昌, 刘宏伟, 等.ZnO/g-C3N4复合型光催化剂的制备及其光催化性能[J].环境化学, 2018, 37(4):792-797.

    WAN J X, REN X C, LIU H W,et al. Preparation and photocatalytic properties of ZnO/g-C3N4 composite photocatalyst[J].Environmental Chemistry,2018,37(4):792-797(in Chinese).

    [7] 龙菲妃, 莫创荣, 胡文科, 等.石墨烯量子点/Bi2WO6的制备及其对抗生素的降解性能[J].化学环保,2019,39(4):586-591.

    LONG F F,MONG C R,HU W K,et al. Preparation of graphene quantum dots/Bi2WO6 and its degradation to antibiotics.[J],2019,39(4):586-591(in Chinese).

    [8] WANG H, ZHANG L, CHEN Z, et al. Semiconductor heterojunction photocatalysts:Design, construction, and photocatalytic performances[J].Chemical Society Review,2014,43(15):5234-5244.
    [9] 卢珊.氧化石墨烯吸附有机物的进展与机理[J].科技经济导刊,2019,27(9):68,13.

    LU S.Progress and mechanism of organics adsorption by GO[J].Science and Technology Economic Guide,2019,27(9):68, 13(in Chinese).

    [10] 庞文慧.基于氧化石墨烯的功能材料的制备与性能[D].兰州:兰州大学, 2018. PANG W H.Preparation and properties of functional materials based on GO.[D].Lanzhou:Lanzhou University,2018(in Chinese).
    [11] 唐诗卉, 姚文清, 谭瑞琴.氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响[J].环境化学, 2019, 38(7):1656-1665.

    TANG S H, YAO W Q, TAN R Q.Effect of oxidation degree of GO on photocatalytic activity of bismuth phosphate/graphene composite aerogel[J]. Environmental Chemistry,2019,38(7):1656-1665(in Chinese).

    [12] 王博强, GO/Ag/BiOX(X=Br, I)复合光催化材料的制备及降解罗丹明B废水的性能研究[D].长春:吉林大学, 2018. WANG B Q.Preparation and degradation of rhodamine B wastewater by GO/Ag/BiOX(X=Br,I) composite photocatalytic materials[D]. Changchun:Jilin University,2018(in Chinese).
    [13] QU S Y, XIONG Y H, ZHANG J.Fabrication of GO/CDots/BiOI nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight[J].Separation Purification Technology,2019,210:382-389.
    [14] YU Y Q, YAN L, CHENG J M,et al. Mechanistic insights into TiO2 thickness in Fe3O4@TiO2-GO composites for enrofloxacin photodegradation[J].Chemical Engineering Journal,2017,325(1):647-654.
    [15] 王莉娜, GO/BiOI复合可见光催化材料的制备及性能研究[D].哈尔滨:哈尔滨师范大学, 2013. WANG L N.Preparation and properties of GO/BiOI composite visible light catalytic material[D].Harbin:Harbin Normal University,2013(in Chinese).
    [16] ZHANG W J, FU J, WANG Y, et al. Enhanced visible-light photocatalytic activity of ZnS/BiOBr/graphene oxide ternary composite[J].Journal of Physical and Chemistry of Solids,2019,127:19-27.
    [17] ZHANG S J, CHENG X X, SONG L M.Preparation of BiF3/BiOBr heterojunctions from microwave-assisted method and photocatalytic performances[J].Journal of Hazardous Material,2019,367(5):304-315.
    [18] LIU X W, NI Z Y, HE Y, et al. Ultrasound-assisted two-step water-bath synthesis of g-C3N4/BiOBr composites:Visible light-driven photocatalysis, sterilization, and reaction mechanism[J].New Journal of Chemistry,2019,43(22):8711-8721.
    [19] REN X Z, SUN Y H, XING H,et al. 3D/2D Ln3+-doped BiOBr/rGO heterostructure with enhanced photocatalytic performance[J].Journal of Nanoparticle Research,2019,21(6):1-14.
    [20] CHONG M N, JIN B, CHOW C W,et al. Recent developments in photocatalytic water treatment technology:A review[J].Water Research,2010,44(10):2997-3027.
    [21] LEI Z, JO S B, SHU Y, et al. Rhodamine B degradation and reactive oxygen species generation by a ZnSe-graphene/TiO2 sonocatalyst[J]. Chinese Journal of Catalysis, 2014, 35(11):1825-1832.
    [22]
    [23] 安继斌, 冯辉霞, 阳海, 等.不同活性物种对光催化降解水中邻苯甲酸二甲酯动力学的贡献研究[J].生态环境学报, 2010, 19(6)1369-1373.

    AN J B, FENG H X, YANG H,et al. The contribution of different active species to the photocatalytic degradation of dimethyl phthalate in water[J].Ecology and Environmental Sciences,2010,19(6):1369-1373(in Chinese).

    [24] 李元昊, 丁忠浩, 陶小明, 等.油田氨氮废水的纳米TiO2光催化处理[J].湖北农业科学, 2013, 52(21):5186-5188.

    LI Y H, DING Z H,TAO X M, et al. Nano-TiO2 photocatalytic treatment of ammonia nitrogen wastewater in oilfield[J].Hubei Agricultural Sciences,2013,52(21):5186-5188(in Chinese).

    [25] PEI Z G, LI L Y, SUN L X, et al.Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide[J]. Carbon,2013,51(51):156-163.
    [26] 朱帅汝, BiOBr/MOF复合材料的制备与光催化性能的研究[D].宁波:宁波大学, 2018. ZHU S R.Preparation and photocatalytic properties of BiOBr/MOF composites[D].Ningbo:Ningbo University,2018(in Chinese).
    [27] WU D, YUE S T, WANG W,et al. Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli[J].Applied Catalysis B:Environmental,2016,192(5):35-45.
    [28] 兰洋, 吕红, 张琴, 等.三氟乙酸(TFA)促进光催化降解水环境中甲基橙的研究[J].四川环境, 2016, 35(6):12-16.

    LAN Y, LV H, ZHANG Q, et al.Study on photocatalytic degradation of methyl orange in water environment by trifluoroacetic acid (TFA)[J].Sichuan Environment,2016,35(6):12-16(in Chinese).

    [29] PAN B C, YONG D Y, ZHANG Q, et al.Oxygen-vacancy-mediated exciton dissociation in biobr for boosting charge-carrier-involved molecular oxygen activation[J].Journal of the American Chemical Society,2018,140(15):5320.
  • 加载中
计量
  • 文章访问数:  3207
  • HTML全文浏览数:  3207
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-09

BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水

    通讯作者: 周建红, E-mail: jianhongzhou@163.com
  • 1. 湖南科技大学生命科学学院, 湘潭, 411201;
  • 2. 湖南科技大学化学化工学院, 湘潭, 411201
基金项目:

湖南省大学生研究性学习和创新性实验计划项目(湘教通[2018]255号-521),湖南省教育厅2018年普通高校教学改革研究项目(G21816,湘教通[2018]436号-372:新工科背景下《生化反应工程》研讨式教学改革与探索)和湖南科技大学大学生研究性学习和创新性实验计划项目(201810534049)资助.

摘要: 通过改进的Hummers法制备氧化石墨烯(GO)、水热法制得BiOBr,再由GO与BiOBr制备出新型的可见光复合纳米光催化剂BiOBr/GO,并用扫描电子显微镜(SEM)和X-射线衍射(XRD)进行了表征分析.用BiOBr/GO来催化降解环丙沙星溶液,得出最佳的GO与BiOBr的复合配比.探究了环丙沙星溶液的浓度、催化剂的投加量、废水pH值、照射光的波长以及光照强度5个因素对BiOBr/GO的光催化降解性能的影响并研究了催化降解环丙沙星的动力学,最后通过自由基捕获实验探究了BiOBr/GO光催化降解抗生素的机理.实验结果表明,相比于纯的BiOBr,BiOBr/GO有更好的可见光催化性能,其催化降解环丙沙星在浓度较低时符合拟一级动力学,在浓度较高时符合拟二级反应动力学;在优化条件下,即环丙沙星的初始浓度为20 mg·L-1、BiOBr/GO的投加量120 mg、溶液的pH值9.02、照射光的波长400 nm以及光照强度10.1 mW·cm-2时,BiOBr/GO在可见光下,对环丙沙星的去除率达到85%,自由基捕获实验得出·O2-在BiOBr/GO光催化降解中占主导地位.研究结果表明复合材料BiOBr/GO可以在可见光下很好地降解环丙沙星,有望在实际应用中降解抗生素废水.

English Abstract

参考文献 (29)

目录

/

返回文章
返回