BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水
Preparation of BiOBr/GO composition nanocatalysts and application of degradation of ciprofloxacin wastewater in visible light
-
摘要: 通过改进的Hummers法制备氧化石墨烯(GO)、水热法制得BiOBr,再由GO与BiOBr制备出新型的可见光复合纳米光催化剂BiOBr/GO,并用扫描电子显微镜(SEM)和X-射线衍射(XRD)进行了表征分析.用BiOBr/GO来催化降解环丙沙星溶液,得出最佳的GO与BiOBr的复合配比.探究了环丙沙星溶液的浓度、催化剂的投加量、废水pH值、照射光的波长以及光照强度5个因素对BiOBr/GO的光催化降解性能的影响并研究了催化降解环丙沙星的动力学,最后通过自由基捕获实验探究了BiOBr/GO光催化降解抗生素的机理.实验结果表明,相比于纯的BiOBr,BiOBr/GO有更好的可见光催化性能,其催化降解环丙沙星在浓度较低时符合拟一级动力学,在浓度较高时符合拟二级反应动力学;在优化条件下,即环丙沙星的初始浓度为20 mg·L-1、BiOBr/GO的投加量120 mg、溶液的pH值9.02、照射光的波长400 nm以及光照强度10.1 mW·cm-2时,BiOBr/GO在可见光下,对环丙沙星的去除率达到85%,自由基捕获实验得出·O2-在BiOBr/GO光催化降解中占主导地位.研究结果表明复合材料BiOBr/GO可以在可见光下很好地降解环丙沙星,有望在实际应用中降解抗生素废水.Abstract: Graphene (GO) was prepared via an improved Hummers method and BiOBr was synthesized by hydrothermal method. And then a novel composite visible light-driven nanometer photocatalyst BiOBr/GO was constructed. The morphology and structure of the prepared of BiOBr/GO were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The optimized GO/BiOBr ratio was obtained via estimation the photocatalytic performance of the catalyst to degrade ciprofloxacin solution. The effect of five factors that the concentration of cycloproxacin, the amount of the catalyst, the pH of the wastewater, the wavelength of the light and the light intensity were investigated on the degradation efficiency of ciprofloxacin. The kinetics of catalytic degradation of ciprofloxacin was also studied. Finally, the mechanism of BiOBr/GO photocatalytic degradation of antibiotics was explored through free radical capture experiment. The photocatalytic degradation rates were fitted with pseudo-first-order kinetics at low initial substrate concentrations and pseudo-second-order kinetics at high initial concentrations. Under the optimum conditions, the removal rate of cycloproxacin by BiOBr/GO could reach 85% under visible light when the concentration of cycloproxacin was 20 mg·L-1, the amount of catalyst added 120 mg, the value of pH 9.02, the wavelength of the light 400 nm, and the intensity of the light was 10.1 mW·cm-2 respectively. The free radical capture experiment showed that·O2- played a dominant role in BiOBr/GO photocatalytic degradation. The composite BiOBr/GO displayed enhanced visible-light driven photocatalytic activity toward ciprofloxacin, showing a promising application potential for the removal antibiotics in wastewater.
-
Key words:
- BiOBr /
- graphene oxide /
- ciprofloxacin /
- photocatalytic degradation
-
[1] 郝迪.抗生素在水环境中的生态效应及危害防御[J].现代农村科技, 2019(4):101. HAO D.The ecological effect of antibiotics in water environment and its harm prevention[J].Modern Rural Science and Technology,2019(4 ):101(in Chinese).
[2] YUN J Y, FEI F X, MING C, et al. Adsorption behavior of methylene blue on carbon nanotubes[J]. Bioresource Technology,2009,101(9):792-799. [3] 吴志斌, 基于石墨烯材料吸附/光催化去除水体中有机污染物的应用及机理研究[D].长沙:湖南大学,2017. WU Z B.Application and mechanism of adsorption/photocatalytic removal of organic pollutants in water based on graphene materials[D].Changsha:Hunan University,2017(in Chinese). [4] BARAN W, ADAMEK E, JAJKO M, et al. Removal of veterinary antibiotics from wastewater by electrocoagulation[J]. Chemosphere,2017, 194(194):381-389. [5] LI D, SHI W D.Recent developments in visible-light photocatalytic degradation of antibiotic[J]. Chinese Journal of Catalysis,2016,37(6):792-799. [6] 万建新, 任学昌, 刘宏伟, 等.ZnO/g-C3N4复合型光催化剂的制备及其光催化性能[J].环境化学, 2018, 37(4):792-797. WAN J X, REN X C, LIU H W,et al. Preparation and photocatalytic properties of ZnO/g-C3N4 composite photocatalyst[J].Environmental Chemistry,2018,37(4):792-797(in Chinese).
[7] 龙菲妃, 莫创荣, 胡文科, 等.石墨烯量子点/Bi2WO6的制备及其对抗生素的降解性能[J].化学环保,2019,39(4):586-591. LONG F F,MONG C R,HU W K,et al. Preparation of graphene quantum dots/Bi2WO6 and its degradation to antibiotics.[J],2019,39(4):586-591(in Chinese).
[8] WANG H, ZHANG L, CHEN Z, et al. Semiconductor heterojunction photocatalysts:Design, construction, and photocatalytic performances[J].Chemical Society Review,2014,43(15):5234-5244. [9] 卢珊.氧化石墨烯吸附有机物的进展与机理[J].科技经济导刊,2019,27(9):68,13. LU S.Progress and mechanism of organics adsorption by GO[J].Science and Technology Economic Guide,2019,27(9):68, 13(in Chinese).
[10] 庞文慧.基于氧化石墨烯的功能材料的制备与性能[D].兰州:兰州大学, 2018. PANG W H.Preparation and properties of functional materials based on GO.[D].Lanzhou:Lanzhou University,2018(in Chinese). [11] 唐诗卉, 姚文清, 谭瑞琴.氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响[J].环境化学, 2019, 38(7):1656-1665. TANG S H, YAO W Q, TAN R Q.Effect of oxidation degree of GO on photocatalytic activity of bismuth phosphate/graphene composite aerogel[J]. Environmental Chemistry,2019,38(7):1656-1665(in Chinese).
[12] 王博强, GO/Ag/BiOX(X=Br, I)复合光催化材料的制备及降解罗丹明B废水的性能研究[D].长春:吉林大学, 2018. WANG B Q.Preparation and degradation of rhodamine B wastewater by GO/Ag/BiOX(X=Br,I) composite photocatalytic materials[D]. Changchun:Jilin University,2018(in Chinese). [13] QU S Y, XIONG Y H, ZHANG J.Fabrication of GO/CDots/BiOI nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight[J].Separation Purification Technology,2019,210:382-389. [14] YU Y Q, YAN L, CHENG J M,et al. Mechanistic insights into TiO2 thickness in Fe3O4@TiO2-GO composites for enrofloxacin photodegradation[J].Chemical Engineering Journal,2017,325(1):647-654. [15] 王莉娜, GO/BiOI复合可见光催化材料的制备及性能研究[D].哈尔滨:哈尔滨师范大学, 2013. WANG L N.Preparation and properties of GO/BiOI composite visible light catalytic material[D].Harbin:Harbin Normal University,2013(in Chinese). [16] ZHANG W J, FU J, WANG Y, et al. Enhanced visible-light photocatalytic activity of ZnS/BiOBr/graphene oxide ternary composite[J].Journal of Physical and Chemistry of Solids,2019,127:19-27. [17] ZHANG S J, CHENG X X, SONG L M.Preparation of BiF3/BiOBr heterojunctions from microwave-assisted method and photocatalytic performances[J].Journal of Hazardous Material,2019,367(5):304-315. [18] LIU X W, NI Z Y, HE Y, et al. Ultrasound-assisted two-step water-bath synthesis of g-C3N4/BiOBr composites:Visible light-driven photocatalysis, sterilization, and reaction mechanism[J].New Journal of Chemistry,2019,43(22):8711-8721. [19] REN X Z, SUN Y H, XING H,et al. 3D/2D Ln3+-doped BiOBr/rGO heterostructure with enhanced photocatalytic performance[J].Journal of Nanoparticle Research,2019,21(6):1-14. [20] CHONG M N, JIN B, CHOW C W,et al. Recent developments in photocatalytic water treatment technology:A review[J].Water Research,2010,44(10):2997-3027. [21] LEI Z, JO S B, SHU Y, et al. Rhodamine B degradation and reactive oxygen species generation by a ZnSe-graphene/TiO2 sonocatalyst[J]. Chinese Journal of Catalysis, 2014, 35(11):1825-1832. [22] [23] 安继斌, 冯辉霞, 阳海, 等.不同活性物种对光催化降解水中邻苯甲酸二甲酯动力学的贡献研究[J].生态环境学报, 2010, 19(6)1369-1373. AN J B, FENG H X, YANG H,et al. The contribution of different active species to the photocatalytic degradation of dimethyl phthalate in water[J].Ecology and Environmental Sciences,2010,19(6):1369-1373(in Chinese).
[24] 李元昊, 丁忠浩, 陶小明, 等.油田氨氮废水的纳米TiO2光催化处理[J].湖北农业科学, 2013, 52(21):5186-5188. LI Y H, DING Z H,TAO X M, et al. Nano-TiO2 photocatalytic treatment of ammonia nitrogen wastewater in oilfield[J].Hubei Agricultural Sciences,2013,52(21):5186-5188(in Chinese).
[25] PEI Z G, LI L Y, SUN L X, et al.Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide[J]. Carbon,2013,51(51):156-163. [26] 朱帅汝, BiOBr/MOF复合材料的制备与光催化性能的研究[D].宁波:宁波大学, 2018. ZHU S R.Preparation and photocatalytic properties of BiOBr/MOF composites[D].Ningbo:Ningbo University,2018(in Chinese). [27] WU D, YUE S T, WANG W,et al. Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli[J].Applied Catalysis B:Environmental,2016,192(5):35-45. [28] 兰洋, 吕红, 张琴, 等.三氟乙酸(TFA)促进光催化降解水环境中甲基橙的研究[J].四川环境, 2016, 35(6):12-16. LAN Y, LV H, ZHANG Q, et al.Study on photocatalytic degradation of methyl orange in water environment by trifluoroacetic acid (TFA)[J].Sichuan Environment,2016,35(6):12-16(in Chinese).
[29] PAN B C, YONG D Y, ZHANG Q, et al.Oxygen-vacancy-mediated exciton dissociation in biobr for boosting charge-carrier-involved molecular oxygen activation[J].Journal of the American Chemical Society,2018,140(15):5320.
计量
- 文章访问数: 3207
- HTML全文浏览数: 3207
- PDF下载数: 51
- 施引文献: 0